
A Static Slicing Method for Functional Programs and Its
Incremental Version

Prasanna Kumar K.

Indian Institute of Technology, Bombay

Mumbai, India

prasannak@cse.iitb.ac.in

Amitabha Sanyal

Indian Institute of Technology, Bombay

Mumbai, India

as@cse.iitb.ac.in

Amey Karkare

Indian Institute of Technology, Kanpur

Kanpur, India

karkare@cse.iitk.ac.in

Saswat Padhi
∗

University of California, Los Angeles

Los Angeles, United States of America

padhi@cs.ucla.edu

ABSTRACT
An effective static slicing technique for functional programs must

have two features. Its handling of function calls must be context

sensitive without being inefficient, and, because of the widespread

use of algebraic datatypes, it must take into account structure trans-

mitted dependences. It has been shown that any analysis that com-

bines these two characteristics is undecidable, and existing slicing

methods drop one or the other. We propose a slicing method that

only weakens (and not entirely drop) the requirement of context-

sensitivity and that too for some and not all programs.

We then consider applications that require the same program

to be sliced with respect to several slicing criteria. We propose an

incremental version of our slicing method to handle such situations

efficiently. The incremental version consists of a one time pre-

computation step that uses the non-incremental version to slice

the program with respect to a fixed default slicing criterion and

processes the results to a canonical form. Presented with a slicing

criterion, a low-cost incremental step uses the results of the pre-

computation to obtain the slice.

Our experiments with a prototype incremental slicer confirms

the expected benefits—the cost of incremental slicing, even when

amortized over only a few slicing criteria, is much lower than the

cost of non-incremental slicing.

CCS CONCEPTS
• Software and its engineering → Functional languages; Ab-
stract data types; Procedures, functions and subroutines; Software
testing and debugging;

KEYWORDS
Functional Programming, Static Program Analysis, Dependence

Analysis, Program Slicing, Incremental Analysis

∗
This work was carried out when the author was affiliated with IIT Bombay.

ACMacknowledges that this contributionwas authored or co-authored by an employee,

contractor or affiliate of a national government. As such, the Government retains a

nonexclusive, royalty-free right to publish or reproduce this article, or to allow others

to do so, for Government purposes only.

CC ’19, February 16–17, 2019, Washington, DC, USA
© 2019 Association for Computing Machinery.

ACM ISBN 978-1-4503-6277-1/19/02. . . $15.00

https://doi.org/10.1145/3302516.3307345

ACM Reference Format:
Prasanna Kumar K., Amitabha Sanyal, Amey Karkare, and Saswat Padhi.

2019. A Static Slicing Method for Functional Programs and Its Incremental

Version. In Proceedings of the 28th International Conference on Compiler
Construction (CC ’19), February 16–17, 2019, Washington, DC, USA. ACM,

New York, NY, USA, 12 pages. https://doi.org/10.1145/3302516.3307345

1 INTRODUCTION
Slicing refers to the class of techniques that delete parts of a given

program while preserving certain desired behaviors, for example

parts of the output. These behaviors are called slicing criteria.
Applications of slicing include debugging (root-cause analysis),

program specialization, parallelization and cohesion measurement.

The core of any slicing technique is dependence analysis. In the

context of functional programs, it can be posed to answer the ques-

tion: Given that we are interested in a certain part of the output of a
program, what parts of the values of each expression in the program
does it depend on. The slice is obtained by deleting expressions that

do not contribute to the designated part of the output.

To be effective, the computed slice should be as precise as pos-

sible. With function calls as the primary construct in functional

programs, precision requires a dependence analysis that is context-

sensitive. Further, the abundant use of algebraic datatypes (eg. lists)

requires that the analysis should precisely capture structure trans-

mitted data dependence. For example, it should be able to conclude

that the value of (car (cons x y)) does not depend on the value of

y. This is not easy, if the constructor and the selector were more

widely separated, say by several function calls. Unfortunately, any

analysis that is context-sensitive and captures structure transmitted

dependence turns out to be undecidable [15]. To get around the

problem of undecidability, slicing methods either drop the require-

ment of context-sensitivity [16], or precise structure transmitted

dependence [21].

We first propose a static slicing method for a first-order subset

of the Scheme language with tuples and lists as the only algebraic

data types. The slicing criteria is a regular grammar that represent

sets of prefix-closed strings of the selectors car and cdr. The slic-
ing criterion represents the part of the output of the program in

which we are interested, and we view it as a demand on the pro-

gram. The core of our slicing method is a dependence analysis that

propagates the demand on the output to all expressions constitut-

ing the program, and a deletion phase that elides expressions that

53

https://doi.org/10.1145/3302516.3307345
https://doi.org/10.1145/3302516.3307345

CC ’19, February 16–17, 2019, Washington, DC, USA P. Kumar K., A. Sanyal, A. Karkare, S. Padhi

(define (lcc str lc
::
cc)

(if (null? str)
(return (cons lc

::
cc))

(if (eq? (car str) nl)
(return (lcc (cdr str) (+ lc 1)

:
(+

::
cc

::
1)))

(return (lcc (cdr str) lc
::
(+

::
cc

:
1))))))

(define (main)
(return (lcc . . . 0

::
0))))

Figure 1: A program in Scheme-like language to compute the
number of characters and lines in the input string. Expres-
sions underlined with a straight line are sliced away when
the program is sliced with respect to car part of output and
those underlined with a curvy line are sliced away when the
program is sliced with respect to cdr.

do not contribute to the demand on the output. Such expressions

are marked by an empty propagated demand. In this our method

resembles the projection function based methods of [6] and [16].

However, unlike these methods which are context-insensitive, we

get around the problem of undecidability by a suitable weakening

of the requirement of context sensitivity. This makes our method

precise by avoiding analysis over fewer infeasible interprocedural

paths. To avoid the inefficiency of analyzing a function separately

for each calling context, we create a compact context-independent

summary for each function. This summary is then used to step over

function calls. Interestingly, it is this context independent summary

that enables the incremental version.

In certain applications of slicing such as parallelization, the same

program has to be sliced more than once, each time with a different

slicing criterion. The example from [16], reproduced in Figure 1,

shows a program that takes a string as input and returns a pair

consisting of the number of characters and lines in the string. To

obtain a program in which character count and line count are

computed in parallel, we could slice the program with respect to

the car and the cdr of the result. This gives two versions of the

program, one in which the expressions underlined with straight

lines and the other in which the expressions underlined with curly

lines are removed. After transforming these programs to make them

executable, they can be run in parallel.

We extend the basic slicing technique to an incremental ver-

sion that consists of a one-time pre-computation step that slices

a program with respect to a default criterion that is common for

all programs. The result of this step is converted to a set of au-

tomata, one for each expression in the program. Each automaton

essentially represents the entire set of slicing criteria that keeps

the corresponding expression in the slice. Interestingly, the set of

automata can be computed in time that is comparable to the time for

a single round of non-incremental slicing. Given a slicing criterion,

an expression is retained in the slice if the intersection of the slicing

criterion with the automaton corresponding to the expression is

non-empty.

The main contributions of this paper are:

(1) We propose a slicing method based on a dependence analysis

(Section 3) that is context-sensitive and also captures structure

transmitted dependences. The method is both precise and effi-

cient. The precision of the analysis is due to context-sensitivity,

p ∈ Prog ::= d1 . . .dn emain — program
df ∈ Fde f ::= (define (f x1 . . . xn) e) — function def

e ∈ Expr ::=




(if x e1 e2) — conditional
(let x ← s in e) — let binding
(return x) — return from function

s ∈ App ::=




k — constant (numeric or nil)
(cons x1 x2) — constructor
(car x) — selects first part of cons
(cdr x) — selects second part of cons
(null? x) — returns true if x is nil
(+ x1 x2) — generic arithmetic
(f x1 . . . xn) — function application

Figure 2: The syntax of our language

albeit in a weakened form to avoid undecidability, and the ef-

ficiency is by avoiding repeated analysis of the function body

through the use of function summaries. The difficulty of creat-

ing function summaries, especially when the domain of analysis

is unbounded, has been pointed out in [16].

(2) We present a formal specification of dependence analysis prob-

lem itself in terms of a non-standard operational semantics.

This has helped us in proving some results which are stated in

the paper without proofs, for example, an independent proof of

the undecidability of dependence analysis and the soundness of

our approximate analysis. In addition, we have also proven the

correctness of the incremental slicing algorithm with respect

to the non-incremental version.

(3) Our formulation allows us to derive an incremental version of

the slicing algorithm by factoring out common computations

while slicing using any slicing criteria (Section 5) and by re-

using these computations. To the best of our knowledge, this

form of incremental slicing has not been attempted before.

(4) We have implemented a prototype slicer for a first-order version

of Scheme (Section 6). We have also extended the implementa-

tion to higher-order programs by converting such programs to

first-order using a technique called firstification [8]. The output

of the slicer on the first-order programs are mapped on to the

higher-order version. Experiments confirm the expected bene-

fits of incremental slicing—the incremental step is one to four

orders of magnitude faster than the non-incremental version.

2 THE TARGET LANGUAGE
Figure 2 shows the syntax of the target language with Scheme-

like syntax. For ease of presentation, we restrict the language to

Administrative Normal Form (ANF) [19]. In this form, the argu-

ments to functions can only be variables. To avoid dealing with

scope-shadowing, we assume that all variables in a program are

distinct. Neither of these restrictions affects the expressibility of our

language. We may sometimes use a label π to refer to an expression

e , such as π :e . However the label is not part of the language. To
keep the description simple, we shall assume that each program

has its own unique set of labels. In other words, a label identifies

both a program point and the program that contains it.

A program in our language is a collection of function defini-

tions followed by a main expression denoted as emain. Applications

54

A Static Slicing Method for Functional Programs CC ’19, February 16–17, 2019, Washington, DC, USA

(denoted by the syntactic categoryApp) consist of functions or oper-
ators applied to variables. Constants are regarded as 0-ary functions.

Expressions (Expr) are either an if expression, a let expression that

evaluates an application and binds the result to a variable, or a

return expression. The return keyword is used to mark the end of

a function.

3 DEPENDENCE ANALYSIS
We represent the selector car by 0 and cdr by 1 for brevity. An access
path is a sequence of selectors, including the empty sequence. Given

the valuev of an expression, say (cons (cons 1 2) 3), the substructure
v ′ corresponding to (cons 1 2) with respect to the root of v can be

represented by the set of access paths {0, 00, 01}—the access path
0 to reach the cons cell forming the root of v ′, and 00 and 01 to

reach the leaves 1 and 2. We call a set of access paths a demand
and use it to denote parts of a structure. Access paths are denoted

by α and demands by σ . Given two access paths α1 and α2, we use

the juxtaposition α1α2 to denote their concatenation. We extend

this notation to a concatenate a pair of demands and even to the

concatenation of a symbol with a demand: σ1σ2 denotes the demand

{α1α2 | α1 ∈ σ and α2 ∈ σ2} and 0σ is a shorthand for {0α | α ∈ σ }.
We use the empty sequence of selectors ϵ to stand for the root of

a structure. Thus base values such as integers have ϵ as the only
substructure.

At the heart of slicing is dependence analysis which answers the

following question of a program P : Given a focus expression e in P , a
demand σ representing the parts of interest in the value of e , and any
other expression e ′, what parts σ ′ of the value of e ′ would be required
to compute σ of e . While our analysis can answer the question at

this level of generality, for this paper the focus expression will be

the main expression emain with a demand denoted by σmain.
As an example, consider the demand {10} on the expression

(cons x y). Clearly, the computation of {10} part of (cons x y),
requires {0} of y. We can thus think of (cons x y) as a demand
transformer transforming the demand {10} on itself to demands

on its subexpressions—{0} on y and the empty demand ∅ on x ,
indicating that no part of x is required.

3.1 Demand Guided Semantics
To formally specify dependence analysis, we define a small-step

operational semantics calledDemand Guided Semantics (DGS). Start-
ing with a demand δmain on the main expression of a program P ,
DGS computes the demand δ on each expression e , as it comes up

for evaluation. δ represents extent to which e has to be evaluated

to meet the required demand δmain on the main expression. We

call the demand thus propagated to an expression as dynamic de-
mand and denote it as δ to differentiate it from static demand σ .
A key aspect of DGS is that an expression is evaluated only if the

dynamic demand on it is non-empty. This is very similar to lazy

evaluation [13] except that the extent of evaluation of the main

expression is determined by an externally supplied demand δmain.
For each expression in the program, dependence analysis computes

the aggregate of all dynamic demands on the expression, over all

DGS traces of P .

We now specify the domains used in the semantics:

v :Val = N + {nil} + Data × Data – Evaluated

d :Data = Val + Clo – Data Value

c :Clo = (App × Env) – Closure

ρ :Env = Var → Data – Environment

An evaluated value is either a number or an empty list or a cons
cell. A data value d may either be an evaluated value or a closure

⟨s, ρ⟩ in which s is an application, and ρ maps free variables of s to
data values. An environment is a mapping from the set of variables

Var to Data. The notation [y⃗ 7→ ρ (x⃗)] represents an environment

that maps the formal arguments yi to the bindings of the actual

arguments xi . ρ ⊕ ρ
′
represents the environment ρ shadowed by

ρ ′ and ⌊ρ⌋X represents the environment ρ ′ restricted to the vari-

ables in the set X . Finally FV (s) represents the free variables in the

application s .
The DGS of our language is shown in Figure 3. The semantics is

given by transitions of the form ρ, S, e,δ ⇝ ρ ′, S′, e ′,δ ′. Here S is a
stack of continuation frames, e is the current expression being eval-

uated, and δ is the dynamic demand on e . Each continuation frame

is a 4-tuple (ρ,x , enext ,δ), signifying that the variable that is bound
to the expression being evaluated is x , and enext is the next expres-
sion to be evaluated in an environment ρ and with demand δ . The
initial state of the transition system is ([]ρ , [([]ρ , ans, (print)
,δmain)], emain, {ϵ }). Notice the empty initial environment []ρ ,

and the initial stack that has a single continuation frame. In this

frame, ans is a distinguished variable that will eventually be bound

to the value of emain and (print) will be picked next for execution.

The evaluation of emain to the extent δmain is mediated through the

print function that is external to DGS, and can trigger DGS eval-

uations a number of times. Each time, DGS evaluates the current

expression to WHNF (represented by the demand {ϵ }), and passes

the result to print. Evaluation stops if the extent of evaluation of

the expression already satisfies its dynamic demand. Else print
initiates separate DGS evaluations for the subexpressions of the

current expression with appropriately modified demands. This is a

variation of a standard procedure in lazy evaluation [13].

We now briefly explain the DGS rules shown in Figure 3. Both

let and function calls follow rules of lazy evaluation. Closures are

created by let expressions (let) and evaluated at two places in

a function body—while checking an if condition (if-clo) and at

a return (return-clo). As an example of closure evaluation, we

explain the rules for car and cons. If the demand δ on (car x) is ∅
then it is not evaluated at all (no-eval). However, if δ is non-empty,

the context of (car x) first does a car-selection on the value of x
and then traverse the paths given by δ . This gives the demand on x
as {0δ }.

In a well typed program, the evaluation of x should result in a

closure say (cons y z). The DGS semantics now uses the car-cons

rule to selecty for evaluation with the propagated demand obtained

by stripping off the leading 0 from all strings in 0δ . This gives back
δ as the demand to be propagated to y. However, if the surrounding
context of (cons y z) had been a cdr instead of car, then this would

have resulted in ∅ on y. This precision is the outcome of handling

structure transmitted dependences. We now formally define the

dependence analysis problem as follows:

55

CC ’19, February 16–17, 2019, Washington, DC, USA P. Kumar K., A. Sanyal, A. Karkare, S. Padhi

Premise Transition Rule name

δ is ∅ ρ, (ρ ′,y, e ′,δ ′) :S, e,δ ⇝ ρ ′, S, e ′,δ ′ no-eval

ρ, (ρ ′,y, e,δ ′) :S,κ,δ ⇝ ρ ′ ⊕ {y 7→ κ}, S, e,δ ′ const

ρ (x) is ⟨s, ρ ′⟩ ρ, S,x ,δ ⇝ ρ ′, S, s,δ var

ρ, S, (car x),δ ⇝ ρ, S,x , 0δ car

ρ, S, (cdr x),δ ⇝ ρ, S,x , 1δ cdr

ρ, (ρ ′,w, e,δ ′) :S, (cons x y), {ϵ } ⇝
ρ ′ ⊕ {w 7→ (ρ (x), ρ (y))}, S, e, δ ′

cons

δ ′ = {α | 0α ∈ δ } ρ, S, (cons x y),δ ⇝ ρ, S, x , δ ′ car-cons

δ ′ = {α | 1α ∈ δ } ρ, S, (cons x y),δ ⇝ ρ, S, y, δ ′ cdr-cons

ρ (x), ρ (y) ∈ N ρ, (ρ ′, z, e,δ ′) :S, (+ x y),δ ⇝
ρ ′ ⊕ {z 7→ (+ ρ (x) ρ (y))}, S, e,δ ′

prim-add

ρ (x) is ⟨s, ρ ′⟩ ρ, S, (+ x y),δ ⇝ ρ, (ρ,x , (+ x y),δ) :S,x , {ϵ } prim-1-clo

ρ (y) is ⟨s, ρ ′⟩ ρ, S, (+ x y),δ ⇝ ρ, (ρ,y, (+ x y),δ) :S,y, {ϵ } prim-2-clo

f defined as (define (f y⃗) ef) ρ, S, (f x⃗),δ ⇝[y⃗ 7→ ⃗ρ (x)], S, ef ,δ funcall

ρ, S, (let x ← s in e),δ ⇝ ρ ⊕ {x 7→ ⟨s, ρ⟩}, S, e,δ let

ρ (x) ∈ N & ρ (x) , 0 ρ, S, (if x e1 e2),δ ⇝ ρ, S, e1,δ if-true

ρ (x) ∈ N & ρ (x) = 0 ρ, S, (if x e1 e2),δ ⇝ ρ, S, e2,δ if-false

ρ (x) is ⟨s, ρ ′⟩ ρ, S, (if x e1 e2),δ ⇝ ρ, (ρ,x , (if x e1 e2),δ) :S,x , {ϵ } if-clo

ρ (x) is ⟨s, ρ ′⟩ ρ, S, (return x),δ ⇝ ρ, S,x ,δ return-clo

Figure 3: Demand guided execution semantics. no-eval has precedence over all rules.

Definition 3.1. The dependence analysis problem is to find an
algorithm which, given a program with emain as the main expression,
a demand δmain, a control point π and a stringw ∈ (0 + 1)∗, outputs
yes if there exists a DGS trace of emain with δmain in which the
expression at π appears with a dynamic demand δ containingw , and
no otherwise.

Theorem 3.2. The dependence analysis problem is undecidable.

While this has been proved in [15] in a slightly different setting,

we have an independent proof based on our formulation of the

problem that uses a completely different reduction strategy. Note

that the Demand-Guided Semantics is only a formal mechanism

to specify (not compute) dependences. The actual computation of

dependences is based on an analysis that we describe in 3.2.

3.2 Dependence Analysis
Given Theorem 3.2, our analysis will eventually compute an over-

approximation of the actual dependences (Section 4.1). For now we

attempt an exact analysis shown in Figure 4. Given an application

s and a demand σ , A returns a demand environment that maps

arguments of s to their demands. The third parameter toA, denoted

DS, represents context-independent summaries of the functions

in the program and is used to analyze function calls. This will be

explained shortly.

For all applications except function calls, the static propagation

of demands bears close resemblance to the propagation of demands

in their corresponding DGS rules. The ideas behind the car and
cons rules have already been discussed in the earlier section. Since

(null? x) only requires the root of x to examine the constructor,

a non-null demand on (null? x) translates to the demand ϵ on x .
A similar reasoning also explains the rule for (+ x y). Since, both

x and y evaluate to integers in a well typed program, a non-null

demand on (+ x y) translates to the demand ϵ on both x and y.
Just as A defines how a primitive like car maps a demand on

itself to demands on its arguments, we would like to derive a simi-

lar transformation for user-defined functions. Since user-defined

functions are, in general, mutually dependent, we define this trans-

formation simultaneously for all user-defined functions. This is

given by the inference rule demand-summary and results in a set

of functionsDSif , defining how a demand σ on a call to f is propa-

gated to its ith parameter. The rule for function calls uses DS to

propagate demands to the arguments of a specific call. We look

upon the functions forDSf as a context-independent summary of

f—context-independent because it is parameterized with respect to

the demand that will be instantiated at the place where the function

is called.

The rule demand-summary specifies the fixed-point property to

be satisfied byDS, namely, the demand transformation assumed

for each function in the program should be the same as the demand

transformation calculated from the body of the function. The reader

will notice the similarity between this rule and the rule for recursive

lets in the Hindley-Milner system of type inference [3, 7, 14]. An

operational interpretation of the rule to findDSif (σ) proceeds by

analyzing ef , the body of f , with respect to a symbolic demand σ .
ThenDSif (σ) is the union of the demands on all occurrences of the

ith argument in ef . A call to a function, sayд, in ef is analysed using

the summaryDSg . In general, this results in a recursive description

ofDSif (σ). We explain in Section 4 how to convert this to a closed

form.

We finally discuss the rules for expressions given by D. The

rule for return is obvious. The rule for if propagates any non-null

demand unchanged to both the then-part and the else-part. The

56

A Static Slicing Method for Functional Programs CC ’19, February 16–17, 2019, Washington, DC, USA

A :: (App,Demand, FuncSummaries) → DemandEnvironment

A (π:κ,σ ,DS) = {π 7→ σ }, for constants including nil
A (π:(null? π1:x),σ ,DS) = {π1 7→ if σ , ∅ then {ϵ } else ∅}
A (π:(+ π1:x π2:y),σ ,DS) = {π1 7→ if σ , ∅ then {ϵ } else ∅,

π2 7→ if σ , ∅ then {ϵ } else ∅}
A (π:: (car π1: x),σ ,DS) = {π1 7→ 0σ }
A (π:: (cdr π1: x),σ ,DS) = {π1 7→ 1σ }

A (π:(cons π1:x π2:y),σ ,DS) = {π1 7→ {α | 0α ∈ σ },π2 7→ {β | 1β ∈ σ }}
A (π:(f π1:y1 · · · πn:yn),σ ,DS) =

⋃n
i=1
{πi 7→ DSif (σ)}

D :: (Exp,Demand, FuncSummaries) → DemandEnvironment

D (π:(return π1:x),σ ,DS) = {π1 7→ σ , π 7→ σ }
D (π:(if π1:x e1 e2),σ ,DS) = D (e1,σ ,DS) ∪ D (e2,σ ,DS) ∪

{π1 7→ if σ , ∅ then {ϵ } else ∅, π 7→ σ }
D (π:(let x ← π1:s in e),σ ,DS) = A (s,σ ′,DS) ∪ {π 7→ σ ,π1 7→ σ ′}

where Π is the set of program points

representing all occurrences of x in e
DE = D (e,σ ,DS), and σ ′ = ∪π ′∈Π DE(π ′),

DS ∈ FuncSummaries :: Funcname→ (Demand→ (Demand1, . . . ,Demandn))
∀f ,∀i,∀σ : D (ef ,σ ,DS) = DE,DSif =

⋃
π ∈Π DE(π)

df1 . . . dfk ⊢l DS
(demand-summary)

(define (f z1 . . . zn) ef) is one of df1 . . .dfk , 1 ≤ i ≤ n,
and Π represents all occurrences of zi in ef

Figure 4: Dependence Analysis

variable used for the condition gets an ϵ demand if the incoming

demand is non-null as it will always evaluate to a boolean value.

The transformation of the demand on the if to the demand on

the conditional variable captures the traditional notion of control

dependence, i.e. whether the value of the ifexpression is the value

of e1 or e2 depends on whether x is true or false. The rule for

(let x ← s in e) first uses σ to calculate the demand environment

DE of the let-body e . The demand on s is the union of the demands

on all occurrences of x in e . Notice that the demand environment

for each expression e includes the demand on e itself apart from its

subexpressions.

While the computation of function summary assumed a symbolic

demand for each function, to compute the demand environment,

we have to supply the concrete demand for each function. To start

with, the demand environment for emain is computed with the ex-

ternally supplied demand σmain. Further, the demand on a function

f , denoted σf , is the union of the demands at all call-sites of f . The
demand environment of a function body ef is calculated using σf .
If there is a call to д inside ef , the demand summaryDSg is used

to propagate the demand across the call. This completes the formal

description of dependence analysis.

For the rest of the paper, we consider the program in Figure 5 as

our running example. The program takes a list of integers as input

and computes the minimum and maximum values along with their

positions in the input list. The function mmp keeps track of the

current minimum and maximum value using the arguments xv and
nv. It compares every element with xv and if the current element is

greater, it updates xv to be the current element and processes the

1. (define (mmp xs p nv np xv xp)
2. (if (null? xs)
3. (return (cons (cons nv np) (cons xv xp)))
4. (let p1← (+ π : p 1)

5. (if (< (car xs) nv)
6. (mmp (cdr xs) p1 (car xs) p xv xp))
7. (if (> (car xs) xv)
8. (mmp (cdr xs) p1 nv np (car xs) p)
9. (mmp (cdr xs) p1 nv np xv xp)))))

10. (define (main)
11. (return (mmp (cdr xs) 2 (car xs) 1 (car xs) 1)))

Figure 5: A program to compute the min and max elements
in a list along with their positions.While the program is not
in ANF, this is not important for the ensuing discussion.

rest of the list. p which keeps track of the position of the current

element is used to update xp. The minimum value and its position

are also computed similarly.

ConsiderDS2

mmp, the function that propagates the demand on

a call to mmp to its second argument. This is specified by demand-

summary, and the operational interpretation of this rule requires

us to do a demand analysis of the body of mmp with a symbolic

demand σ and union the resulting demands on all occurrences of

the second argument p in the body. Firstly notice that, according to

the rules of if and let, the demand σ is propagated without change

to the three calls at lines 6, 8 and 9. Further, p appears as the fourth

argument to the call to mmp at line 6 and the sixth in the call to

57

CC ’19, February 16–17, 2019, Washington, DC, USA P. Kumar K., A. Sanyal, A. Karkare, S. Padhi

mmp at line 8. Clearly the demands on these two occurrences of

p areDS4

mmp (σ) andDS
6

mmp (σ). Also notice that the demands of

the three occurrences of p1 at lines 6, 8 and 9 are the same, namely

DS2

mmp (σ). And since p is being used to define p1 at line 4, by the

let rule, the demand on this occurrence of p is:

if (DS2

mmp (σ) , ∅) then {ϵ } else ∅

Bringing everything together, we get:

DS2

mmp (σ) = DS4

mmp (σ) ∪ DS
6

mmp (σ) ∪

if (DS2

mmp (σ) , ∅) then {ϵ } else ∅ (1)

We bring this equation to a closed-form by substituting the val-

ues ofDS4

mmp (σ) andDS
6

mmp (σ) and eliminating the recursion in

DS2

mmp (σ). This is the subject of the next section. Also recollect

that the concrete demand σmmp used to find the demand environ-

ment of the body of mmp is the union of the demands on all calls

to mmp. Now there here are four calls to mmp in the program. If

we assume that the concrete demand on the body of mmp to be

σmmp, then it is easy to see that this demand propagates without

change to the three calls in the body of mmp. The call to mmp in

main also has the demand σmain. Thus we get:

σmmp = σmmp ∪ σmain (2)

This gives the value of σmmp as σmain. Finally, the function sum-

maries and the demands on function bodies are used to compute

the demand environment for function bodies. When the body of

mmp is analyzed with the demand σmmp, the demand on p1 is

DS2

mmp (σmmp). Thus, by the let rule, the demand on p at π , de-
noted Dπ , is given as:

Dπ = if (DS2

mmp (σmmp) , ∅) then {ϵ } else ∅ (3)

In summary, at the end of the analysis we shall have (i) A set of

equations (e.g. 1) defining the function summaries DSif for each

argument of each function, (ii) an equation (e.g. 2) for the concrete

demand σf on the body of each function f , and (iii) equations

(e.g. 3) specifying the demand Dπ at each program point π . Our
dependence analysis is sound in the following sense:

Theorem 3.3. Assume that the dependence analysis of a program
P with a demand σmain results in a demand environment in which the
demand on an expression e is σ . Also consider a DGS trace of P with
the same demand σmain on the main expression. For any evaluation
of e in the trace, if the demand on e is δ , then δ ⊆ σ .

4 COMPUTING DEPENDENCES
We now describe how to (i) set up the equations for function sum-

maries, DSif , and convert them into a closed form, and (ii) use

these summaries to obtain the demand environment for all function

bodies, indeed the entire program. Also recall that the summaries

are functions that describe how a symbolic demand on a function

call is propagated to the arguments of the function.

However, notice that the rules of dependence analysis requires

us to do operations that cannot be done symbolically. The cons rule,
for example, is defined in terms of the set {α | 0α ∈ σ }. Clearly
this requires us to know whether the strings in σ start with a 0.
Similarly, the if rule requires to know whether σ is ∅. The way out

is to treat these operations also symbolically. For this we introduce

three new symbols 0̄, 1̄ and ∅ϵ , to capture the intended operations.

If 0 represents selection using car, 0̄ is intended to represent its

opposite—use by the constructor cons as its left argument. Thus 0̄0
(cons-car cancellation) reduces to the empty string ϵ . Similarly ∅ϵ
represents the symbolic transformation of any non-null demand to

ϵ and null demand to itself. These transformation are defined and

the order in which they are applied is made deterministic through

the simplification function S.

S ({ϵ }) = {ϵ } S (0σ) = 0S (σ) S (1σ) = 1S (σ)

S (0̄σ) = {α | 0α ∈ S (σ)}

S (1̄σ) = {α | 1α ∈ S (σ)}

S (∅ϵσ) =

{
∅ if S (σ) = ∅
{ϵ } otherwise

S (σ1 ∪ σ2) = S (σ1) ∪ S (σ2)

The symbol 0̄ strips the leading 0 from the string following it,

as required by the rule for cons. Similarly, ∅ϵ
1
examines the string

following it and replaces it by ∅ or {ϵ }. The rules for cons and if in
terms of the new symbols are:

A (π : (cons π1:x π2:y), σ , DS) = {π1 7→ 0̄σ , π2 7→ 1̄σ }

D (π : (if π1:x e1 e2), σ , DS) = D (e1, σ , DS) ∪ D (e2, σ , DS) ∪

{π1 7→ ∅ϵσ , π 7→ σ }

The rules for+ and null? aremodified similarly. Now the demand

summaries can be obtained symbolically with the new symbols as

markers indicating the operations that should be performed on the

string following them. After we compute demand environments

in closed-form and the slicing criterion σsc is substituted as a con-
crete demand for the main expression emain, i.e., σmain = σsc , we
eliminate the symbols 0̄, 1̄ and ∅ϵ using S.

4.1 Converting the Results of Analysis to
Grammars

As mentioned earlier, and illustrated in the example in the last sec-

tion, to obtain the context-independent summary DSif , we start

with a symbolic demand σ and compute the demand environment

for ef , the body of f . From this we calculate the demand on the

ith argument of f , say x . This is the union of demands of all occur-

rences of x in the body of f . The demand on the ith argument is

equated toDSif (σ). Since the body may contain other calls, the de-

pendence analysis within ef makes use ofDS in turn. The equations

shown below define DS2

mmp (σ). Notice that the earlier equation

for DS2

mmp (σ) in Section 3.2 has been rewritten in terms of the

symbols 0̄, 1̄ and ∅ϵ .

DS2

mmp (σ) = DS6

mmp (σ) ∪DS
4

mmp (σ) ∪ ∅ϵDS
2

mmp (σ)

DS4

mmp (σ) = 1̄0̄σ ∪DS4

mmp (σ)

DS6

mmp (σ) = 1̄1̄σ ∪DS6

mmp (σ)

1
the choice of this symbol is to remind the reader that its action depends on whether

the demand following it is ∅ or not.

58

A Static Slicing Method for Functional Programs CC ’19, February 16–17, 2019, Washington, DC, USA

As noted in [16], the main difficulty in obtaining a convenient

function summary is to find a closed-form forDS2

mmp (σ) instead
of the recursive description. Our solution to the problem lies in the

following observation: Since we know that the rules of dependence

analysis always prefix σ with symbols, we can write DSif (σ) as

DSif σ (DSif concatenated with σ), where DS
i
f is a set of strings over

the alphabet {0, 1, 0̄, 1̄, ∅ϵ }, and represents the effect ofDSif on σ .

The modified equations after doing this substitution will be,

DS2

mmpσ = DS6

mmpσ ∪ DS4

mmpσ ∪ ∅ϵDS
2

mmpσ

DS4

mmpσ = 1̄0̄σ ∪ DS4

mmpσ

DS6

mmpσ = 1̄1̄σ ∪ DS6

mmpσ

Notice that we can factor out and cancel σ on both sides of the

equations. Thus, what we have so far is:

DS2

mmp (σ) = DS2

mmpσ , where (4)

DS2

mmp = DS6

mmp ∪ DS4

mmp ∪ ∅ϵDS
2

mmp (5)

Notice that the equations forDS2

mmp and σmmp are still recursive.
However, these equations can also be viewed as a grammar with

{0, 1, 1̄, 0̄, ∅ϵ } as terminal symbols and DS2

mmp, Dπ and σmmp as

non-terminals. Thus finding the solution to the set of equations gen-

erated by the dependence analysis reduces to finding the language

generated by the corresponding grammar. In fact the language gen-

erated by the grammar is the least solution of equations above. The

least solution corresponds to our interest, the most precise slice
2
.

The equations can now be re-written as: grammar rules:

Dπ → ∅ϵDS
2

mmpσmmp

DS2

mmp → DS4

mmp | DS
6

mmp | ∅ϵ DS2

mmp

DS4

mmp → 1̄0̄ | DS4

mmp

DS6

mmp → 1̄1̄ | DS6

mmp

σmmp → σsc

(6)

Thus the question whether the expression at π can be sliced for the

slicing criterion σmmp is equivalent to asking whether the language
S (L(Dπ)) is empty. In fact, the simplification process S itself can

be captured by adding the following set of five unrestricted produc-

tions named unrestricted and adding the production D′π → Dπ $ to

the grammar generated earlier.

0̄0→ ϵ 1̄1→ ϵ
∅ϵ0→ ∅ϵ ∅ϵ1→ ∅ϵ ∅ϵ $→ ϵ

The set of five unrestricted productions shown are independent of

the program being sliced and the slicing criterion. The symbol $

marks the end of a sentence and is required to capture the ∅ϵ rule

correctly.

We now generalize and state our formulation of the slicing prob-

lem: Assume that π is the program point associated with an ex-

pression e . Given a slicing criterion σ , letGσ
π denote the grammar

(N , T , Pσπ ∪ unrestricted ∪ {D′π → Dπ $}, D′π). HereT is the set of

2
We reiterate the differences betweenDSf and DSf .DSf is a transfer function and

is the unknown in the equation generated by the analysis. DSf is a grammar symbol

representing a set of strings, and is a part of the solution. The solution ofDSf maps a

demand σ to DSf σ .

q0 q1
∅

q31̄

q21̄
q4

0̄

1̄ q50

q6
0 q7

0

1

∅

q0 q1
∅

q31̄

q21̄
q4

0̄

1̄ q81

q9
0 q10

0

0

∅

(a) (d)

q0 q1
∅

q3
1̄

q21̄
q4

0̄

1̄ q50

q6
0 q7

0

1

ǫ
ǫ

∅

q0 q1
∅

q31̄

q21̄
q4

0̄

1̄ q81

q9
0 q10

0

0

ǫ

ǫ∅

(b) (e)

q0 q1
∅ ∅ q0 q1

∅ ∅

(c) (f)

Figure 6: The simplification of the automaton Mσ
π : (a), (b)

and (c) show the simplification for the slicing criterion σ =
{ϵ, 0, 01, 00}, while (d), (e) and (f) show the simplification for
the criterion σ = {ϵ, 1, 0, 10, 00}.

terminals {0, 1, 0̄, 1̄, ∅ϵ , $}, Pσπ is the set of context-free productions

defining Dπ , the demand on e (as illustrated by the grammar rules

6). N contains the non-terminals of Pσπ and additionally includes

the special non-terminal D′π . As mentioned earlier, given a slicing

criterion σ , the question of whether the expression e can be sliced

out of the containing program is equivalent to asking whether the

language L(Gσ
π) is empty. This is where the undecidability of the

problem manifests in our specific approach:

Theorem 4.1. Given a program point π and slicing criterion σ ,
the problem whether L(Gσ

π) is empty is undecidable.

We get around the problem of undecidability by using the tech-

nique of Mohri-Nederhof [9] which takes a CFG G as input and

returns a strongly regular grammar R that is an over-approximation

ofG . The grammar Pσπ consists of a CFG, sayG , along with the non-

CFG productions in unrestricted. Mohri-Nederhoff is applied only

toG , giving a regular grammar, say R. The membership problem of

R ∪ unrestricted is (efficiently) decidable. The NFA corresponding

to this strongly regular grammar is denoted asMσ
π . The simplifica-

tion rules can be applied onMσ
π without any loss of precision. The

details of the simplification process are in [5]. Currently, we do not

know if there is a better approximation forG∪unrestricted with the

membership question still decidable. Even if such an approximation

exists the algorithm to answer the membership question may not

be efficient for practical purposes.

For our running example, the grammar after dependence anal-

ysis is already regular, and thus remains unchanged by Mohri-

Nederhof transformation. The automata in Figure 6a–c and 6d–f

correspond to the two slicing criteria σmmp = {ϵ, 0, 00, 01} and
σmmp = {ϵ, 0, 00, 1, 10} and illustrate the simplification of corre-

sponding Mohri-Nederhof automata M
σmmp
π . It can be seen that,

when the slicing criterion is {ϵ, 0, 00, 1, 10}, the language of Dπ is

empty and hence the argument p can be sliced away. A drawback of

the method outlined above is that with a change in the slicing cri-

terion, the entire process of grammar generation, Mohri-Nederhof

approximation and simplification has to be repeated. This is likely

to be inefficient for large programs.

59

CC ’19, February 16–17, 2019, Washington, DC, USA P. Kumar K., A. Sanyal, A. Karkare, S. Padhi

q0 q1
∅

q31̄

q21̄
q4

0̄

1̄

∅

q′s q′4
ǫ

q′30

q′21
q′1 q′0

1

1

(a) (b)

Figure 7: (a) The canonical automaton Aπ and (b) the corre-
sponding completing automaton Aπ

5 INCREMENTAL SLICING
The incremental algorithm avoids repetition of computation when

the same program is sliced with different criteria. This is done by

pre-computing the part of the slice computation that is common to

all slicing criteria.

Since any slicing criterion except ∅ must include the root of

the result of the program, the pre-computation involves slicing

with {ϵ }. Indeed, this is the first step of the following three-step

pre-computation process: (i) Using the non-incremental slicing

method with the fixed slicing criterion {ϵ } to compute the demand

at each expression π: e and applying the Mohri-Nederhof procedure

to construct the corresponding automatonM {ϵ }π , (ii) a step called

canonicalization which applies the simplification rules onM {ϵ }π , but

stops when the symbols 0̄ and 1̄ of every accepting string of the

resulting automaton are only at the end, and, (iii) from the canon-

ical automaton, constructing an automaton called the completing
automaton, the output of the pre-computation step. We now explain

the step called canonicalization.

For the running example, the automatonM {ϵ }π is shown in Fig-

ure 7a. Each accepting string in this automaton has 0̄ and 1̄ symbols

only at the end. Thus the automaton is canonical, and we shall

denote it as Aπ . It is clear that if Aπ is concatenated with a slicing

criterion that starts with the symbol 01, the result, after simplifica-

tion, will be non-empty, and the expression at π has to be retained

in the slice. We call such a string a completing string forAπ . Observe

that the completing string was easy to detect since the canonicaliza-

tion step pushed all the 0̄ and 1̄ symbols towards the final state in

the canonical automaton. Similarly, 11 is also a completing string

for the same automaton.

Now consider the automaton in Figure 7b, called the completing
automaton, that recognizes the language (01 + 11) (0 + 1)∗. This
automaton recognizes all completing strings for Aπ and nothing

else. Thus for an arbitrary slicing criterion σ , it suffices to intersect

σ with the completing automaton to decide whether the expression

at π will be in the slice. In fact, it is enough for the completing

automaton to recognize just the language (01 + 11) instead of

(01 + 11) (0 + 1)∗. The reason is that any slicing criterion, say σ ,
is prefix closed, and therefore σ ∩ (01 + 11) is ∅ if and only if

σ ∩ (01 + 11) (0 + 1)∗ is ∅. The incremental algorithm generalizes

these observations.

For constructing the completing automaton for an expression e ,
we saw that it would be convenient to canonicalize the automaton

M {ϵ }e to an extent that all accepted strings have 0̄ and 1̄ symbols

only at the end. We now give a set of rules C, that captures this

Function createCompletingAutomaton(A)
Data: The Canonicalized Automaton

A =
〈
Q, {0, 1, 0̄, 1̄, ∅ϵ }, δ, q0, F

〉
Result: A , the completing automaton for A
F ′ ← {q

fr
| q

fr
∈ Q, hasBarFreeTransition(q0, qfr

, δ) }
/* Reverse the ‘‘bar’’ transitions: directions as

well as labels */

foreach (transition δ (q, 0̄) → q′) do
add transition δ ′(q′, 0) → q

foreach (transition δ (q, 1̄) → q′) do
add transition δ ′(q′, 1) → q

q′s ← new state /* start state of A */

foreach (state q ∈ F) do
add transition δ ′(q′s , ϵ) → q

return
〈
Q ∪ {q′s }, {0, 1}, δ ′, q′s , F ′

〉
Function inSlice(e , σ)

Data: expression e , slicing criteria σ
Result: Decides whether e should be retained in slice

return (L(Ae) ∩ σ , ∅)

Algorithm 1: Functions to create the completing automaton

and the slicing function.

simplification.

C ({ϵ }) = {ϵ } C (0σ) = 0C (σ)

C (1σ) = 1C (σ) C (∅ϵσ) = ∅ϵC (σ)

C (0̄σ) = {0̄ | C (σ) is {ϵ }} ∪ {α | 0α ∈ C (σ)}

∪ {0̄1̄α | 1̄α ∈ C (σ)} ∪ {0̄0̄α | 0̄α ∈ C (σ)}

C (1̄σ) = {1̄ | C (σ) is {ϵ }} ∪ {α | 1α ∈ C (σ)}

∪ {1̄1̄α | 1̄α ∈ C (σ)} ∪ {1̄0̄α | 0̄α ∈ C (σ)}

C (σ1 ∪ σ2) = C (σ1) ∪ C (σ2)

C differs from S in that it accumulates continuous runs of 0̄ and
1̄ at the end of a string. Notice that C, like S, simplifies its input

string from the right. Here is an example of C simplification:

1∅ϵ 0̄00∅ϵ01̄1̄10̄
C
→ 1∅ϵ 0̄00∅ϵ01̄0̄

C
→ 1∅ϵ0∅ϵ01̄0̄

In contrast the simplification using S gives:

1∅ϵ 0̄00∅ϵ01̄1̄10̄
S
→ 1∅ϵ 0̄00∅ϵ01̄1̄1∅

S
→

1∅ϵ 0̄00∅ϵ01̄0̄∅
S
→ . . .

S
→ ∅

C satisfies two important properties:

(1) The result of C always has the form (0+1+∅ϵ)∗ (0̄+1̄)∗. Further,
if σ ⊆ (0 + 1 + ∅ϵ)∗, then C (σ) = σ .

(2) S subsumes C, i.e., S (C (σ1)C (σ2)) = S (σ1σ2).
Note that while we have defined canonicalization over a lan-

guage, the actual canonicalization takes place over an automaton—

specifically the automatonMπ obtained afterMohri-Nederhof trans-

formation. The process of canonicalization over an automaton is

a minor variation of the simplification process [5]. Specifically, (i)

adjacent 0̄0 and 1̄1 edges are replaced by an ϵ edge and the result-

ing automaton is made deterministic, until there are no more such

edges, and (ii) edges with labels 0̄ or 1̄ are retained only if their

targets have a path reaching some final node, and the labels on this

path consist only of 0̄ or 1̄ symbols. It is in the second step that the

canonicalization differs from simplification over automata.

60

A Static Slicing Method for Functional Programs CC ’19, February 16–17, 2019, Washington, DC, USA

Algorithm 1 describes function createCompletingAutomaton
that takes Aπ , the canonical Mohri-Nederhof automaton for the

slicing criterion {ϵ }, as input, and constructs the completing au-

tomaton Aπ . Recollect that the strings recognized by Aπ are from

(0 + 1 + ∅ϵ)∗ (0̄ + 1̄)∗. Call the set of states reachable from the start

state using only edges with labels {0, 1, ∅ϵ } as the frontier set. The
completing automaton is a copy of canonical automaton with edges

labeled by 0̄ and 1̄ symbols reversed, and the symbols themselves

replaced by 0 and 1 respectively. All edges with labels {0, 1, ∅ϵ } are
dropped. Further, all states in the frontier set are marked as final

states, and a new start node is added with transitions to the states

corresponding to the final states of canonical automaton.

The completing automaton is computed only once and can be re-

used whenever the program needs to be sliced. To decide whether

π: e can be sliced out, the function inSlice described in Algorithm 1

just checks if the intersection of the slicing criteria with L(Aπ) is
null. We now present a theorem that states that the incremental

algorithm inSlice(e,σ) is sound in that it produces the same result

as the non-incremental version which checks whether the language

after the simplification of the Mohri-Nederhof automaton is empty.

Theorem 5.1. S (L(Mσ
π)) , ∅ ↔ inSlice(e,σ)

6 EXPERIMENTS AND RESULTS
In the absence of the details of implementations of other slicing

methods, we have compared the incremental step of our method

with the non-incremental version. Our experiments show that the

incremental algorithm is better even when the overhead of creat-

ing the completing automata is amortized over only a few slicing

criteria.

Our benchmarks consists of first order programs derived from the

nofib suite [10]. The higher order programs have been handcrafted

to bring out the issues related to higher order slicing. The program

named parser includes most of the higher order parser combinators

required for parsing. Table 1 shows the time required for slicingwith

different slicing criteria. For each benchmark, we first show, the pre-

computation time, i.e. the time required to construct the completing

automata. We then consider three different slicing criteria, and for

each slicing criterion, present the times for non-incremental slicing

and the incremental step. Table 1 shows that for all benchmarks, the

time for computing the completing automaton is comparable to the

time for computing the slice non-incrementally. Since computing

completing automata is a one time activity, incremental slicing

is very efficient even when a program is sliced only twice. As

seen in Table 1, the time taken for the incremental step is orders

of magnitude faster than non-incremental slicing, confirming the

benefits of reusing the completing automata.

We also show the number of expressions in the original program

and in the slice produced to demonstrate the effectiveness of the

slicing process itself. Here are some of the interesting cases. It can be

seen that the slice for nqueens for any slicing criterion includes the
entire program. This is because finding out whether a solution exists

for nqueens requires the entire program to be executed. On the

other hand, the program lambda is a λ-expression evaluator that

returns a tuple consisting of an atomic value and a list. The criterion

{ϵ, 0} requires majority of the expressions in the program to be

present in the slice to compute the atomic value. On the other hand,

the criterion {ϵ } or {ϵ, 1} do not require any value to be computed

and expressions which compute the constructor only are kept in the

slice, hence our algorithm is able to discard most of the expressions.

After examining the nature of the benchmark programs, the slicing

criteria and the slices, we conclude that slicing is most effective

when the slicing criterion selects parts of a bounded structure, such

as a tuple, and the components of the tuple are produced by parts

of the program that are largely disjoint.

7 RELATEDWORK
Most of the efforts in slicing have been for imperative programs.

The surveys [1, 20, 22] give good overviews of variants of the slicing

problem and their solution techniques. We focus on previous work

related to functional programs. Silva, Tamarit and Tomás [21] have

proposed a slicing method for Erlang. While their method handles

calling contexts precisely, as pointed out by the authors themselves,

they give up on structure transmitted dependences. When given

the Erlang program: {main() -> x = {1,2}, {y,z} = x, y}, their method

gives the imprecise slice {main() -> x = {1,2}, {y,□} = x, y} when
sliced on the variable y. Notice that the slice retains the constant
2 for not handling the interaction between cons and cdr. For the
equivalent program (let x← (cons 1 2) in (let y ← (car x) in y))
with the slicing criterion ϵ , our method would correctly compute

the demand on the constant 2 as 1̄(ϵ ∪ 0). This simplifies to the

demand ∅, and 2 would thus not be in the slice.

The slicing technique that is closest to ours is due to Reps and

Turnidge [16]. They use projection functions, represented as tree

grammars, as slicing criteria. Given a program P and a projection

functionψ , their goal is to produce a program which behaves like

ψ ◦P. Their analysis consists of propagating the projection function

backwards to all subexpressions of the program. After propagation,

any expression with the projection function ⊥ (corresponding to

our ∅ demand), is sliced out of the program. Liu and Stoller [6] use

a similar method for dead code analysis and elimination.

These techniques differ from ours in two respects. Unlike us,

they give up on context-sensitivity and merge calling contexts, thus

affecting the precision of the slice. The second difference relates to

our computation of function summaries using symbolic demands

that enables the incremental version. Consider, as example, the

program fragment π: (cons π1:x π2:y) representing the body of a

function. Dependence analysis with the symbolic demand σ gives

the demand environment {π 7→ σ ,π1 7→ 0̄σ ,π2 7→ 1̄σ }. Notice
that the demands π1 and π2 are in terms of the symbols 0̄ and 1̄,
a result of our decision to work with symbolic demands. Slicing

with the default criterion ϵ and canonicalizing the result gives the

demand environment

{
π 7→ ϵ,π1 7→ 0̄,π2 7→ 1̄

}
. There is enough

information in this to deduce that π1 (π2) will be in the slice only

if the slicing criterion includes 0(1). Since the methods in [16] and

[6] deal with concrete demands, it is difficult to see the techniques

behind our incremental version being replayed on their methods.

There are other less related approaches to slicing. Rodrigues and

Barbosa [17] use a graph based approach for component identi-

fication in Haskell programs. On a different note, Rodrigues and

Barbosa [18] use program calculation for obtaining a slice. Given a

program P and a projection functionψ , they calculate a program

equivalent toψ ◦ P. However the method is not automated. Finally,

61

CC ’19, February 16–17, 2019, Washington, DC, USA P. Kumar K., A. Sanyal, A. Karkare, S. Padhi

Table 1: Statistics for incremental and non-incremental slicing.

Program Pre-computation #exprs in Slicing with {ϵ } Slicing with {ϵ, 0} Slicing with {ϵ, 1}
time (ms) program Non-inc

time

(ms)

Inc time

(ms)

#expr

in slice

Non-inc

time

(ms)

Inc time

(ms)

#expr

in slice

Non-inc

time

(ms)

Inc time

(ms)

#expr

in slice

First-order Programs

treejoin 1817.2 609 1556.7 1.3 565 1592.3 1.4 567 1641.3 1.6 567

deriv 217.0 415 109.6 0.9 267 128.3 0.9 273 173.5 1.3 293

minmaxpos 32.4 189 13.7 0.7 166 16.8 0.7 168 16.5 0.6 168

nperm 408.5 648 285.1 1.3 249 303.7 5.2 429 298.9 5.4 284

paraffins 1898.1 1268 1775.1 1.3 16 1791.8 4.0 1204 1803.1 4.0 1204

knightstour 834.1 675 647.9 1.4 511 691.3 3.2 511 546.8 2.9 511

huffman 4208.2 1124 3324.0 2.3 897 3559.5 2.2 900 3373.0 2.2 901

sudoku 94273.3 2105 80065.4 4.6 2070 83629.5 3.9 2073 79691.1 4.7 2070

lcss 10144.0 703 6773.0 1.5 694 7474.0 1.5 697 7714.8 1.6 695

nqueens 165.0 366 96.8 0.9 366 116.4 0.9 366 116.7 0.9 366

linecharcount 17.6 108 8.8 0.5 92 6.7 0.6 98 8.4 0.4 102

studentinfo 90.6 310 64.7 0.6 106 67.6 0.7 109 71.1 1.0 108

takl 43.7 158 25.3 0.4 105 27.0 0.4 111 26.5 0.6 105

fibheap 133716.3 679 101365.1 2.2 53 101508.9 10.7 678 102740.1 8.7 54

lambda 1625.9 750 1179.2 1.6 27 1335.7 5.7 734 1014.2 2.8 34

Higher-order Programs

fold 25.0 127 11.2 0.3 17 15.0 0.5 84 12.9 0.5 36

barneshut 7859.1 1600 5876.2 2.8 149 6121.1 9.1 611 5989.9 3.2 151

maptail 20.3 102 13.8 0.6 58 11.9 0.6 72 12.9 0.7 64

sssp 2913.9 772 2260.9 1.3 385 2084.9 2.9 429 2296.4 2.0 385

parser 3711.4 1294 2473.1 1.1 178 2623.7 1.0 178 3160.3 1.3 184

dynamic slicing techniques have been explored by Perera et al. [12],

Ochoa et al. [11] and Biswas [2].

8 CONCLUSIONS AND FUTUREWORK
We have presented an algorithm for slicing first order functional

programs and also its incremental version. We introduce a notion

called demand that represents parts of a structure that are of interest.

We view the slicing criterion as a demand on the value of the main

expression of a program, and design a dependence analysis that

propagates this demand to all expressions in the program. Only the

expressions with non-empty demands are retained in the slice.

Ideally, the slicing algorithm should be based on a precise de-

pendence analysis, which could be attained (amongst other means)

by: (i) making the analysis context-sensitive and avoiding analysis

over infeasible paths, and (ii) by capturing constructor-selector in-

teraction precisely and avoiding false data dependences. Requiring

both, however, results in undecidability. Our approach to depen-

dence analysis gives a context free grammar to which we add two

non-context free productions to capture constructor-selector in-

teractions. The language derived by the grammar is the precise

result of the analysis. However, given the undecidability of depen-

dence analysis, we derive an algorithm, by overapproximating the

context-free part to a regular grammar. The analysis is precise in

many cases—non-recursive and tail-recursive functions for exam-

ple.

In the incremental version, a per program pre-computation step

slices the program with the default criterion ϵ . This step factors

out the computation that has to be done while slicing with any

slicing criterion. The result, reduced to a canonical form, can now

be used to find the slice for a given criterion with minimal compu-

tation. Experiments with our implementation confirm the benefits

of incremental slicing.

We believe that our work is much more complete than earlier

work on slicing functional programs. We have a specification of

dependence analysis problem through DGS which was used to give

an alternate proof of undecidabilty. DGS was also used to prove

the soundness of our (approximate) dependence analysis. To the

best of our knowledge, this is the first attempt to put slicing on

such a formal basis. We also have a proof of the correctness of the

incremental method with respect to the non-incremental version.

Due to lack of space the proofs could not be included. And finally,

we have extended our approach to higher-order programs through

firstification and reported results on a number of benchmarks.

There are however two areas of concern. While our incremental

slicer is fast enough, the pre-computation step is slow, primarily

because of the canonicalization step. The other concern is the im-

precision that arises out of the Mohri-Nederhoff approximation. As

an example, consider the function mapsq:

(define (mapsq l)
(if (null? l) (return l)
(return (cons (sq (car l)) (mapsq (cdr l)))))

The reader can verify that the actual function summary for

mapsq is: DS1

mapsq (σ) = DS1

mapsqσ , where DS1

mapsq is the lan-

guage ϵ | 1n 1̄n | 1n0∅ϵ 0̄1̄n , forn ≥ 0. Now, given a slicing criterion

σ = {ϵ, 1, 11, 110} standing for the path to the third element of a

list, it is easy to see that DS1

mapsq (σ) after simplification would

give back σ itself, and this is the most precise slice. However, due to

Mohri-Nederhof approximation DS1

mapsq would be approximated

62

A Static Slicing Method for Functional Programs CC ’19, February 16–17, 2019, Washington, DC, USA

by ϵ | 1n 1̄m | 1k0∅ϵ 0̄1̄l , n,m, k , l ≥ 0. In this case, DS1

mapsq would

be (0 + 1)∗, keeping all the elements of the input list l in the slice.

A APPENDIX
A.1 Undecidability of Dependence Analysis

Theorem A.1. The dependence analysis problem is undecidable.

We provide the briefest of outlines since the full proof runs into

pages. We first show that for a class of grammarsCG consisting of a

set of context-free productions over the terminal symbols {0, 1, 0̄, 1̄}
along with the fixed set of non-context-free productions 0̄0 → ϵ
and 1̄1 → ϵ the problem of whether ϵ belongs to an arbitrary

grammar in the class is undecidable. This is done by reducing the

halting problem to the to the ϵ-recognition problem above. We then

consider a subset ofCG , sayCG ′, that is large enough to replay the

undecidability proof. Specifically, the set CG ′ represents encoding
of all TuringMachines. Finally, we show that any grammarG inCG ′

can be converted to a program P such that the problem of whether ϵ
belongs to L(G) can be reduced to the dependence analysis problem.

A.2 Soundness of Approximate Dependence
Analysis

Recall the formal statement:

Theorem A.2. If the dependence analysis of a program P with a
demand σmain results in a demand environment in which the demand
on an expression e is σ . Also consider a DGS trace of P with the same
demand σmain on the main expression. For any evaluation of e in the
trace, if the demand on e is δ , then δ ⊆ σ .

Consider the trace of a program in execution under DGS. Assume

that an expression e appears on the trace for evaluation with an

execution context E = (ρ, S, _,δ). The evaluation of e under the
context E is deemed to be over, when its value v reaches the extent

of evaluation specified by δ and is replaced by the continuation

on the top of S. During this evaluation (of e under the context

E), consider a sub-expression e ′ of e that appears on the trace

for evaluation with a context, say E ′ = (ρ ′, S′, _,δ ′). Then the

soundness of our analysis involves showing that if σ and σ ′ are
the static demands on e and e ′ respectively, then δ ⊆ σ implies

δ ′ ⊆ σ ′. If this happens for every execution context E and every sub-
expression e ′, we say that the expression e preserves subsumption.

Assuming that all applications preserve subsumption, we first

prove by structural induction that expressions preserve subsump-

tion. Next we discharge the assumption regarding applications by

showing that they too preserve subsumption. The only non-trivial

application is a function call for which we induct on the depth of

a call. Finally, starting with the fact that for emain, δmain ⊆ σmain
(actually δmain = σmain), we propagate the containment relation

throughout the program using the previously proven subsumption

results.

Detailed proofs of Theorem A.1 and Theorem A.2 can be found

in [4].

A.3 Correctness of Incremental Slicing
We provide the detailed proof of the correctness of incremental

slicing. Recall that we use the following notations:

(1) Gσ
π is the grammar generated by dependence analysis for an

expression π : e in the program of interest, when the slicing

criteria is σ
(2) Aπ is the automaton corresponding toG {ϵ }π afterMohri-Nederhof

transformation and canonicalization

(3) Aπ is the completing automaton for e
We first show that the result of the dependence analysis for an

arbitrary slicing criterionσ can be decomposed as the concatenation

of the grammar obtained from the dependence analysis with the

fixed slicing criterion {ϵ } and σ itself.

Lemma A.3. For all expressions e and slicing criteria σ , L(Gσ
π) =

L(G {ϵ }π)σ .

Proof. The proof is by induction on the structure of e . Observe
that all the rules of the dependence analysis (Figure 4) add symbols

only as prefixes to the incoming demand. Hence, the slicing criteria

will always appear as a suffix of any string that is produced by the

grammar. Thus, any grammar L(Gσ
π) can be decomposed as σ ′σ for

some language σ ′. Substituting {ϵ } for σ , we get G {ϵ }π = σ ′. Thus

L(Gσ
π) = L(G {ϵ }π)σ . □

Given a string s over (0̄ + 1̄)∗, we use the notation s to stand for

the reverse of s in which all occurrences of 0̄ are replaced by 0 and

1̄ replaced by 1. Clearly, S ({ss}) = {ϵ }.
We next prove the completeness and minimality of Aπ .

Lemma A.4. {s | S (L(M {s }π)) , ∅} = L(Aπ) (0 + 1)∗

Proof. We first proveLHS ⊆ RHS . Let the string s ∈ S (L(M {s }π)).

Then by Lemma A.3, s ∈ S (L(M {ϵ }π){s}). By Property 2, this also

means that s ∈ S (C (L(M {ϵ }π)){s}). Since strings in C (L(M {ϵ }π)) are
of the form (0 + 1 + ∅ϵ)∗ (0̄ + 1̄))∗ (Property 1), this means that

there is a string p1p2 such that p1 ∈ (0+ 1+ ∅ϵ)∗ and p2 ∈ (0̄+ 1̄)∗,
and S ({p2}{s}) ⊆ (0 + 1)∗. Thus s can be split into two strings s1

and s2, such that S ({p2}{s1}) = {ϵ }. Therefore s1 = p2. From the

construction of Aπ we have p2 ∈ L(Aπ) and s2 ∈ (0 + 1)∗. Thus,
s ∈ L(Aπ) (0 + 1)∗.

Conversely, for the proof ofRHS ⊆ LHS , we assume that a string

s ∈ L(Aπ) (0 + 1)∗. From the construction of Aπ we have strings

p1,p2, s
′
such thatp1p2 ∈ C (L(Mϵ

π)),p1 ∈ (0+1+∅ϵ)∗,p2 ∈ (0̄+1̄)∗,
s is p2s

′
and s ′ ∈ (0 + 1)∗. Thus, S (L(M {s }π)) = S (L(M {ϵ }π {s})) =

S (C (L(M {ϵ }π)){s}) = S ({p1p2p2s
′}) = {p1s

′}. Thus, S (L(M {s }π)) is
non-empty and s ∈ LHS . □

We now prove our main result: Our slicing algorithm represented

by inSlice (Algorithm 1) returns true if and only if S(L(Aϵπ)σ) is
non-empty.

Theorem A.5. The incremental slicing algorithm is sound i.e.
S (L(Mσ

π)) , ∅ ↔ inSlice(e,σ)

Proof. We first prove the forward implication. Let s ∈ S (L(Mσ
π)).

From Lemma A.3, s ∈ S (L(Mϵ
π)σ). From Property 2,

s ∈ S (C (L(Mϵ
π))σ). Thus, there are strings p1,p2 such that p1 ∈

C (L(Mϵ
π)), p2 ∈ σ , s = S ({p1p2}). Further p1 in turn can be decom-

posed as p3p4 such that p3 ∈ (0 + 1 + ∅ϵ)∗ and p4 ∈ (0̄ + 1̄)∗. We

also have S ({p4p2}) ⊆ (0 + 1)∗. Thus p4 is a prefix of p2.

63

CC ’19, February 16–17, 2019, Washington, DC, USA P. Kumar K., A. Sanyal, A. Karkare, S. Padhi

From the construction of Aπ , we know p4 ∈ L(Aπ). Further, p4

is a prefix of p2 and p2 ∈ σ , from the prefix closed property of σ

we have p4 ∈ σ . This implies Aπ ∩ σ , ∅ and thus inSlice(e,σ)
returns true.

Conversely, if inSlice(e,σ) is true, then∃s : s ∈ L(Aπ)∩σ . In par-
ticular, s ∈ L(Aπ). Thus, from Lemma A.4 we have S (L(M {s }π)) , ∅.
Further, since s ∈ σ we have S (L(Mσ

π)) , ∅. □

REFERENCES
[1] David Binkley and Mark Harman. 2004. A survey of empirical results on program

slicing. Advances in Computers 62 (2004).
[2] Sandip Kumar Biswas. 1997. Dynamic Slicing in Higher-order Programming

Languages. Ph.D. Dissertation. University of Pennsylvania, Philadelphia, PA,

USA.

[3] R. Hindley. 1969. The Principal Type-Scheme of an Object in Combinatory Logic.

Trans. Amer. Math. Soc. 146 (1969), 29–60. http://www.jstor.org/stable/1995158

[4] Prasanna Kumar K. 2019. Dependence Analysis of Functional Programs and its
Applications. Ph.D. Dissertation. Indian Institute of Technology, Bombay, Mumbai,

India.

[5] Amey Karkare, Uday Khedker, and Amitabha Sanyal. 2007. Liveness of Heap

Data for Functional Programs. In Heap Analysis and Verification Workshop.
[6] Yanhong A. Liu and Scott D. Stoller. 2003. Eliminating Dead Code on Recursive

Data. Sci. Comput. Program. 47 (2003).
[7] Robin Milner. 1978. A theory of type polymorphism in programming. J. Comput.

System Sci. 17, 3 (1978), 348 – 375. https://doi.org/10.1016/0022-0000(78)90014-4

[8] Neil Mitchell and Colin Runciman. 2009. Losing Functions Without Gaining Data:

Another Look at Defunctionalisation. In Proceedings of the 2nd ACM SIGPLAN
Symposium on Haskell.

[9] MehryarMohri andMark-Jan Nederhof. 2000. Regular Approximation of Context-

Free Grammars through Transformation. In Robustness in Language and Speech
Technology. Kluwer Academic Publishers.

[10] NoFib. 2019. Haskell Benchmark Suite. http://git.haskell.org/nofib.git. (Last

accessed).

[11] Claudio Ochoa, Josep Silva, and Germán Vidal. 2008. Dynamic Slicing of Lazy

Functional Programs Based on Redex Trails. Higher Order Symbol. Comput. 21
(2008).

[12] Roly Perera, Umut A. Acar, James Cheney, and Paul Blain Levy. 2012. Functional

programs that explain their work. In ACM SIGPLAN International Conference on
Functional Programming.

[13] Simon L. Peyton-Jones. 1987. The Implementation of Functional Programming
Languages. Prentice-Hall.

[14] Benjamin C. Pierce. 2002. Types and Programming Languages (1st ed.). The MIT

Press.

[15] Thomas Reps. 2000. Undecidability of Context-sensitive Data-dependence Anal-

ysis. ACM Trans. Program. Lang. Syst. (2000).
[16] Thomas W. Reps and Todd Turnidge. 1996. Program Specialization via Program

Slicing. In Partial Evaluation, International Seminar, Dagstuhl Castle, Germany.
[17] Nuno F. Rodrigues and Luis S. Barbosa. 2006. Component Identification Through

Program Slicing. Electronic Notes in Theoretical Computer Science 160 (2006).
[18] Nuno F. Rodrigues and Luis S. Barbosa. 2006. Program Slicing by Calculation.

Journal of Universal Computer Science (2006).
[19] Amr Sabry and Matthias Felleisen. 1992. Reasoning About Programs in

Continuation-passing Style. SIGPLAN Lisp Pointers (1992).
[20] Josep Silva. 2012. A Vocabulary of Program Slicing-based Techniques. ACM

Comput. Surv. (2012).
[21] Josep Silva, Salvador Tamarit, and César Tomás. 2012. System Dependence

Graphs in Sequential Erlang. In Proceedings of the 15th International Conference
on Fundamental Approaches to Software Engineering (FASE’12).

[22] Frank Tip. 1995. A Survey of Program Slicing Techniques. Journal of Programming
Languages 3 (1995).

64

http://www.jstor.org/stable/1995158
https://doi.org/10.1016/0022-0000(78)90014-4
http://git.haskell.org/nofib.git

	Abstract
	1 Introduction
	2 The target language
	3 Dependence Analysis
	3.1 Demand Guided Semantics
	3.2 Dependence Analysis

	4 Computing dependences
	4.1 Converting the Results of Analysis to Grammars

	5 Incremental Slicing
	6 Experiments and results
	7 Related work
	8 Conclusions and Future Work
	A APPENDIX
	A.1 Undecidability of Dependence Analysis
	A.2 Soundness of Approximate Dependence Analysis
	A.3 Correctness of Incremental Slicing

	References

