
UNIVERSITY OF CALIFORNIA

Los Angeles

Data-Driven Learning of Invariants and Specifications

A dissertation submitted in partial satisfaction

of the requirements for the degree

Doctor of Philosophy in Computer Science

by

Saswat Padhi

2020

© Copyright by

Saswat Padhi

2020

ABSTRACT OF THE DISSERTATION

Data-Driven Learning of Invariants and Specifications

by

Saswat Padhi

Doctor of Philosophy in Computer Science

University of California, Los Angeles, 2020

Professor Todd D. Millstein, Chair

Although the program verification community has developed several techniques for analyzing

software and formally proving their correctness, these techniques are too sophisticated for

end users and require significant investment in terms of time and effort. In this dissertation,

I present techniques that help programmers easily formalize the initial requirements for

verifying their programs — specifications and inductive invariants. The proposed techniques

leverage ideas from program synthesis and statistical learning to automatically generate these

formal requirements from readily available program-related data, such as test cases, execution

traces etc. I detail three of these data-driven learning techniques – FlashProfile and PIE

for specification learning, and LoopInvGen for invariant learning.

I conclude with some principles for building robust synthesis engines, which I learned while

refining the aforementioned techniques. Since program synthesis is a form of function learning,

it is perhaps unsurprising that some of the fundamental issues in program synthesis have

also been explored in the machine learning community. I study one particular phenomenon

— overfitting. I present a formalization of overfitting in program synthesis, and discuss two

mitigation strategies, inspired by existing techniques.

ii

The dissertation of Saswat Padhi is approved.

Adnan Darwiche

Sumit Gulwani

Miryung Kim

Jens Palsberg

Todd D. Millstein, Committee Chair

University of California, Los Angeles

2020

iii

To my parents ... for everything

To the hackers who taught me so much, and made our software secure

To those upholding truth, honesty, and integrity across our institutions

To the heroes who keep up the fight for privacy, liberty, and sovereignty

iv

TABLE OF CONTENTS

1 Introduction . 1

1.1 Post-hoc Validation . 2

1.1.1 Formal Verification . 3

1.1.2 Software Testing . 4

1.2 Correctness by Construction . 5

1.2.1 Formal Synthesis . 5

1.2.2 Programming by Examples . 5

1.3 Thesis Statement and Contributions . 6

2 Learning Program Invariants . 9

2.1 Overview . 11

2.1.1 Data-Driven Precondition Inference 12

2.1.2 Feature Learning via Program Synthesis 14

2.1.3 Feature Learning for Loop Invariant Inference 16

2.2 Algorithms . 20

2.2.1 Precondition Inference . 20

2.2.2 Loop Invariant Inference . 26

2.3 Evaluation . 30

2.3.1 Precondition Inference . 30

2.3.2 Loop Invariants for C++ Code . 35

2.4 Related Work . 39

2.5 Applications and Extensions . 42

v

3 Learning Input Specifications . 43

3.1 Overview . 50

3.1.1 Pattern-Specific Clustering . 52

3.1.2 Pattern Learning via Program Synthesis 55

3.2 Hierarchical Clustering . 57

3.2.1 Syntactic Dissimilarity . 58

3.2.2 Adaptive Sampling of Patterns . 60

3.2.3 Dissimilarity Approximation . 62

3.2.4 Hierarchy Construction and Splitting 64

3.2.5 Profiling Large Datasets . 65

3.3 Pattern Synthesis . 67

3.3.1 The Pattern Language LFP . 68

3.3.2 Synthesis of LFP Patterns . 70

3.3.3 Cost of Patterns in LFP . 75

3.4 Evaluation . 77

3.4.1 Syntactic Similarity . 79

3.4.2 Profiling Accuracy . 80

3.4.3 Performance . 83

3.4.4 Comparison of Learned Profiles . 85

3.5 Applications in PBE Systems . 88

3.6 Related Work . 91

4 Overfitting in Program Synthesis . 94

4.1 Motivation . 98

vi

4.1.1 Grammar Sensitivity of SyGuS Tools 98

4.1.2 Evidence for Overfitting . 99

4.2 SyGuS Overfitting in Theory . 102

4.2.1 Preliminaries . 102

4.2.2 Learnability and No Free Lunch . 104

4.2.3 Overfitting . 107

4.3 Mitigating Overfitting . 109

4.3.1 Parallel SyGuS on Multiple Grammars 110

4.3.2 Hybrid Enumeration . 111

4.4 Experimental Evaluation . 120

4.4.1 Robustness of PLearn . 121

4.4.2 Performance of Hybrid Enumeration 121

4.4.3 Competition Performance . 123

4.5 Related Work . 123

5 Conclusion . 125

References . 127

vii

LIST OF FIGURES

1.1 Approaches for developing reliable software, and my research focus relative to them. 7

2.1 An example of data-driven precondition inference. 13

2.2 A C++ implementation of sub. 16

2.3 Algorithm for precondition generation. 20

2.4 The core PIE algorithm. 21

2.5 The feature learning algorithm. 23

2.6 The boolean function learning algorithm. 24

2.7 Verified precondition generation. 26

2.8 Loop invariant inference using PIE. 27

2.9 Comparison of PIE configurations. The left plot shows the effect of different

numbers of tests. The right plot shows the effect of different conflict group sizes. 33

3.1 Custom atoms, and refinement of profiles with FlashProfile 45

3.2 FlashProfile’s interaction model: thick edges denote input and output to

the system, dashed edges denote internal communication, and thin edges denote

optional parameters. 48

3.3 The main profiling algorithm . 51

3.4 Default atoms in FlashProfile, with the corresponding regex. 52

3.5 A hierarchy with suggested and refined clusters: Leaf nodes represent strings,

and internal nodes are labelled with patterns describing the strings below them.

Atoms are concatenated using “ � ”. A dashed edge denotes the absence of a

pattern that describes the strings together. 53

3.6 Learning the best pattern for a dataset . 55

viii

3.7 Algorithms for pattern-similarity-based hierarchical clustering of string datasets 58

3.8 Adaptively sampling a small set of patterns . 61

3.9 Approximating a complete dissimilarity matrix 63

3.10 Profiling large datasets . 65

3.11 Limiting the number of patterns in a profile . 66

3.12 Formal syntax and semantics of our DSL LFP for defining syntactic patterns over

strings . 69

3.13 Computing the maximal set of compatible atoms 74

3.14 Number and length of strings across datasets . 78

3.15 Similarity prediction accuracy of FlashProfile (FP) vs. a character-based

measure (JarW), and random forests (RF1...3) trained on different distributions . 80

3.16 FlashProfile’s partitioning accuracy with different 〈µ, θ〉-configurations . . . 81

3.17 Quality of descriptions at 〈µ = 4.0, θ = 1.25〉 . 82

3.18 Quality of descriptions from current state-of-the-art tools 83

3.19 Impact of sampling on performance (using the same colors and markers as Figure 3.16) 84

3.20 Performance of FlashProfile over real-life datasets 85

3.21 Ordering partitions by mutual dissimilarity . 89

3.22 Examples needed with and without FlashProfile 90

4.1 Grammars of quantifier-free predicates over integers 98

4.2 For each grammar, each tool, the ordinate shows the number of benchmarks that

fail with the grammar but are solvable with a less-expressive grammar. 99

4.3 The fib_19 benchmark [GJ07] . 100

4.4 The PLearn framework for SyGuS tools. 110

ix

4.5 Hybrid enumeration to combat overfitting in SyGuS 114

4.6 An algorithm to divide a given size budget among subexpressions 115

4.7 The number of failures on increasing grammar expressiveness, for state-of-the-art

SyGuS tools, with and without the PLearnframework (Figure 4.4) 120

4.8 L -LoopInvGen, H -HE+LoopInvGen, P -PLearn(LoopInvGen). H is not

only significantly robust against increasing grammar expressiveness, but it also

has a smaller total-time cost (τ) than P and a negligible overhead over L. . . . 122

x

LIST OF TABLES

2.1 A sample of inferred preconditions for OCaml library functions. 32

2.2 Comparison of PIE with an approach that uses eager feature learning. The size

of a feature is the number of nodes in its abstract syntax tree. Each Qi indicates

the ith quartile, computed independently for each column. 34

2.3 Experimental results for LoopInvGen. An invariant’s size is the number of nodes

in its abstract syntax tree. The analysis time is in seconds. 36

2.4 A sample of inferred invariants for C++ benchmarks. 37

3.1 Profiles for a set of references — number of matches for each pattern is shown on

the right . 44

3.5 Profiles for a dataset with zip codes . 86

3.6 Profiles for a dataset containing US routes . 87

4.1 Observed correlation between synthesis time and number of rounds, upon increas-

ing grammar expressiveness, with LoopInvGen [PSM16] on 180 benchmarks . 100

4.2 Performance of LoopInvGen [PSM16] on the fib_19 benchmark (Figure 4.3).

In (b) and (c), we show predicates generated at various rounds (numbered in bold).102

xi

ACKNOWLEDGMENTS

It is the constant support and guidance of several kind people that has helped me achieve

my career and success in graduate school. First, I wish to thank my advisor, Todd Millstein,

for everything he has taught me during the years — from developing a good research taste

to effectively communicating ideas. I am grateful to Todd for being extremely flexible with

projects that I wanted to pursue, and for always being open to collaborations. I am also

thankful to my initial advisor, Miryung Kim, for allowing me the opportunity to move with

her (from UT Austin) to UCLA, and join Todd’s research group.

This journey would not have been the same without the amazing researchers I met at

Microsoft Research — Sumit Gulwani, Alex Polozov, Rahul Sharma, and Benjamin Zorn. I

feel very fortunate to have had the chance to work with them and learn from them. I cannot

thank them enough for all the help, the unwavering support, and for always believing in my

ideas and encouraging me. I would especially like to thank Alex and Rahul for their candid

advice, and above all, for being awesome mentors and great friends.

I also owe a debt of appreciation to my coauthors and collaborators for all the insightful

discussions and constructive criticism — it has been as much fun as it has been educational.

I would also like to thank my committee members and colleagues, who have reviewed drafts

of my papers, listened patiently to my ideas, and have given helpful feedback.

Words fall short when expressing my gratitude to my brother, my parents, and grand-

parents — for their unending love and absolute faith in me, for words of encouragement, and

for dealing with my mood swings and days (sometimes weeks) of radio silence. Many thanks

to my friends in Los Angeles and Seattle as well: Aayush, Ashutosh, Aishwarya, Akshay,

Brandon, Dat, Gulzar, Kirti, Krishna, Parthe, Pradeep, Pratik, Siva, and Tianyi, who made

this journey joyful and memorable. Special thanks to Siva for teaching me about networks!

Finally, I would like to thank UCLA for this opportunity to learn and grow, and Microsoft

Research for supporting and recognizing my research with a PhD fellowship.

xii

VITA

2011, 2013 Teaching Assistant (“Computer Programming and Utilization” course), Com-

puter Science and Engineering Department, IIT Bombay.

2012 Intern, Institut für Informationssysteme, TU Braunschweig, Germany.

2013 Intern, Google LLC, Mountain View, California.

2014 Teaching Assistant (“Abstraction and Paradigms in Programming” course),

Computer Science and Engineering Department, IIT Bombay.

2014 B. Tech. in Computer Science and Engineering with Honors, IIT Bombay.

2014, 2016 Teaching Assistant (“Programming Languages” course), Computer Science

Department, UCLA.

2016 Intern, PROSE, Microsoft Corp., Redmond, Washington.

2017 Intern, Microsoft Research, Redmond, Washington.

2018 FLoC Olympic Games Medal in Invariant-Synthesis Track of SyGuS-Comp.

2017 – 2018 Research Software Development Engineer (part-time), Microsoft Research,

Redmond, Washington.

2018 – 2019 Intern, Microsoft Research, Bengaluru, India.

2019 –Present Organizing Committee Member, SyGuS Competition.

2017 – 2019 Microsoft Research PhD Fellow.

2019 – 2020 UCLA Dissertation-Year Fellow.

2020 Distinguished Paper Award, PLDI 2020.

xiii

PUBLICATIONS

Saswat Padhi, Rahul Sharma, and Todd Millstein. “Data-Driven Precondition Inference with

Learned Features.” In Proceedings of the 37th ACM SIGPLAN Conference on Programming

Language Design and Implementation (PLDI), pp. 42-56. 2016.

Saswat Padhi, Prateek Jain, Daniel Perelman, Oleksandr Polozov, Sumit Gulwani, and

Todd Millstein. “FlashProfile: A Framework for Synthesizing Data Profiles.” In Proceedings

of ACM on Programming Languages (PACMPL), 2 OOPSLA, pp. 150:1-28. 2018.

Saswat Padhi, Todd Millstein, Aditya Nori, and Rahul Sharma. “Overfitting in Synthesis:

Theory and Practice.” In Proceedings of the 31st International Conference on Computer-Aided

Verification (CAV), pp. 315-334. 2019.

Anders Miltner, Saswat Padhi, Todd Millstein, and David Walker. “Data-Driven Inference

of Representation Invariants.” In Proceedings of the 41st ACM SIGPLAN Conference on

Programming Language Design and Implementation (PLDI). 2020. To Appear.

xiv

CHAPTER 1

Introduction

Due to their unmatched efficacy, computing devices have overrun almost every aspect of our

lives, from transportation systems to power grid controls to healthcare applications. We are

truly approaching the age of ubiquitous computing, a future envisioned by Mark Weiser [Wei91],

with computing systems being inseparable from our daily lives, while simultaneously making

them disappear [LY02]. However, with our ever increasing dependence on these systems, it is

all the more important to ensure their reliability. Today, software defects are more than a

mere annoyance — every defect exposes a potential vulnerability, which may be exploited by

malicious attackers. We have already witnessed several software horror stories [Huc04, Neu86]

that had major negative impact on our social and economic growth. And even today, we

continue to discover major vulnerabilities in widely used mature software, such as the

HeartBleed vulnerability in OpenSSL [DKA14], the ShellShock vulnerability in Unix

Bash [Inc14], the BadLock security flaw in Sambda file server [Inc16], and the Ghost

vulnerability in the GNU C library (glibc) [Inc15].

Attempts at reasoning about software “to make sure it is correct” date back to 1949,

when Alan Turing presented formal proofs for two properties of a program for computing

factorials [Tur49]. Program verification techniques provide strong guarantees on software,

by formally proving the desired properties on them: functional correctness, guaranteed

termination, memory safety and so on. However, a proof for undecidability of the halting

problem [Tur37], also due to Turing, essentially implies that it is impossible to design a

system which automatically verifies arbitrary non-trivial properties of programs! Nevertheless,

1

significant progress has been made towards manual and automated solutions for helping

programmers build reliable systems [DKW08, BH14]. Computer scientists have already

shown remarkable achievements in building complex systems with verified guarantees, such

as compilers [Ler06, MSG09], OS kernels [KEH09], and web browsers [JTL12], etc.

However, building software with proven reliability guarantees is still a niche domain

for computer scientists, and remains largely unapproachable for the software development

community. Several surveys since the last two decades [HS02, WLB09, Huu13, BH14] have

reported that in spite of the success of technologies for formally verifying software, they are

yet to see widespread adoption as a part of the conventional software development cycle.

Only a few small pockets in the industrial software community, those dealing with critical

systems within very specific domains, routinely use verification techniques.

A major hindrance to building reliable software is the colossal cost, both in terms of time

and human effort, involved in formalizing its intended behavior [HS02, BH14]. Sections 1.1

and 1.2 provide an overview of two main approaches for ensuring reliability of software,

and concretely describe the limitations of state-of-the-art techniques. The key challenge in

leveraging these techniques is providing the desired program invariants : properties that always

hold at certain program points for all executions. Manually constructing these invariants is

not only onerous, but also highly error-prone. I propose automatically learning them, and in

Section 1.3 I overview some techniques that I have developed.

1.1 Post-hoc Validation

The earliest, and most popular approach for guaranteeing the reliability of software involves

validating it post-hoc, i.e. after it is built. Depending on the rigor of the validation technique,

they can be classified into the two categories — (a) verification, and (b) testing — which

are described in subsequent subsections.

2

1.1.1 Formal Verification

This class of techniques formally proves a desired property on a program, thereby providing

strong guarantees on its behavior over all possible executions. The theoretical underpinnings

for software verification originate from the concept of program logics, which provide a meaning

to a program by viewing it as a mathematical entity. Floyd-Hoare logic [Flo67, Hoa69], and

Dijkstra’s predicate transformer semantics [Dij75] provide logical frameworks for rigorously

reasoning about the meaning of programs. Program logics, along with efficient decision

procedures [NO79, BCD11, DB08], model checkers [CE82, CGP99, CBR01], and automated

theorem provers [CAB86, Gor88, ORS92] have established the foundations for modern

verification techniques [DKW08, BH14].

However, although we have achieved algorithmic breakthroughs in formal verification,

the proposed techniques are quite sophisticated, and require significant investment in terms

of time and effort, even for the highly-skilled. Proof assistants such as Coq [CH84, BC13],

HOL [Gor88], and PVS [ORS92] require developers to write much of the correctness proofs

for their implementation, which can be machine-verified. While some existing technologies,

such as Spec# [BLS04], VCC [DMS09], Dafny [Lei10], and Why3 [BFM11], alleviate this

by automating the proof generation, they still require the developer to furnish the following

two key requirements for verification:

• A formal specification detailing the intended behavior precisely, in terms of desired

invariants over the expected inputs, and the output. Constructing an accurate specifi-

cation is quite burdensome, even for experts. As pointed out in a recent study [HS02],

“crafting a correct specification (especially one using an obscure formal system) is often

much more difficult than writing the program to be proved (even one written in an

obscure programming language).”

• Inductive invariants for reasoning about unbounded control flows in the implementation,

such as loops, recursive functions, distributed protocols, etc. First proposed by Tony

3

Hoare [Hoa69], inductive invariants (similar to inductive hypotheses) allow for using

mathematical induction in proving properties over a potentially unbounded number

of executions. Providing these is even harder than writing correct specifications, since

they are fundamentally implementation-dependent and require formal reasoning of the

implementation along with the specification.

Both these requirements enforce invariants on the program behavior at various points in

the program, which aids formal reasoning. However, existing tools offer little or no support

in helping developers provide these. Besides a high competence in formal logic required to

initially model them, the ever-changing requirements for real software also necessitate the

ability to rapidly update them. Although there has been a increase in interest for helping

developers formulate these, existing techniques are either too restrictive, or often generate

low quality candidates. Sections 2.4 and 3.6 present detailed comparisons with prior art.

1.1.2 Software Testing

Naturally, due to the significant impediments in using formal verification techniques, a majority

of the software development community have instead adopted software testing. Testing

validates the correctness of an implementation over a small subset of the possible program

executions, and therefore only provides a weak guarantee on the program behavior. Several

approaches have been recently proposed to improve the coverage of tests over complex real-life

programs. A particularly noteworthy approach is concolic testing [SMA05, GKS05, CDE08],

which is a hybrid approach between software verification and testing.

However, the primary objective of software testing is limited to identifying bugs, rather

than rigorously proving the correctness of programs. As Dijkstra has famously said [DDH72],

“Program testing can be used to show the presence of bugs, but never to show their absence! ”.

The reader may refer to a recent survey [OR14] for details on the current trends in software

testing. These techniques can complement software verification.

4

1.2 Correctness by Construction

An alternative to post-hoc software validation is synthesizing software that is correct by

construction. The once “dream” [MW79] of computers automatically synthesizing a program

from description of the desired behavior, is now getting closer to becoming a reality. “Program

Synthesis is the task of discovering an executable program from user intent expressed in

the form of some constraints.” [Gul10] Program synthesis approaches can also be similarly

classified into two categories — (a) formal synthesis, and (b) programming by examples —

based on the rigor of the technique. I overview these techniques in the following subsections.

1.2.1 Formal Synthesis

Since as early as 1980s [MW79, MW80], several techniques have been proposed for synthesizing

programs from an intent expressed as a formal description of the functionality. Probably

unsurprisingly, there is a strong parallel between formal verification, and formal synthesis —

both require a formal specification, and inductive invariants. While a formal specification

is sufficient for synthesizing loop-free programs [KMP10, JGS10], inductive invariants for

loopy programs must either be manually provided [MW79, MW80, KKK13], or are implicitly

expressed by constraining the structure of loops [STB06, SGF10, ABJ13]. As previously

discussed in the context of formal verification, the key challenge lies in formulating the

accurate specifications and inductive invariants for the desired program, which is often as

hard as writing a correct implementation.

1.2.2 Programming by Examples

With the goal of addressing the difficulty in formulating a complete formal specification,

there have been several recent attempts at synthesizing intended programs from incomplete

specifications, such as a small set of input/output examples [CH93, Lie01, Gul11, AGK13],

or more generally, an incomplete set of constraints [PG15]. These approaches, referred to as

5

programming by example, have achieved tremendous success and popularity, especially in the

domain of data wrangling, due to their unparalleled efficiency and accuracy at many common

data-processing tasks [PG16].

However, this approach suffers from similar drawbacks as software testing. Although

the techniques exhibit a high accuracy at many common repetitive tasks, the synthesized

program is unreliable beyond the provided examples for challenging tasks. This unreliability

has been a target of much criticism recently [Wal13, MSG15]. The root cause for this, is the

inevitable ambiguity in predicting the desired program. While examples are easier to provide

than a full specification, they do not accurately constrain the set of possible programs.

1.3 Thesis Statement and Contributions

My thesis is that, it is possible to drastically reduce the manual effort involved in ensuring

software reliability, by providing developers with automated techniques for formulating the

appropriate invariants for their programs using information from concrete program executions,

such as test inputs, execution traces etc. that are typically much easier to provide.

I present several such solutions in this work, all of which are guided by four key principles,

which I abbreviate as the Pair principles for designing verification systems:

Predictive: proactively suggesting likely invariants

Adaptive: allowing developers to extend the techniques with their domain knowledge

Interactive: supporting refinement of the suggested invariants towards the desired one

Rigorous: providing well-defined guarantees on the invariants, despite being speculative

The main goal of my research so far has been to help developers generate likely invariants

for their programs using readily-available program-related data. Both specifications and

inductive invariants essentially enforce certain invariants on the behavior at various points in

the program, which are necessary to formally prove satisfaction of the desired properties over

6

Post-hoc
Validation

Correctness
by Construction

Program
Invariants

7 Too onerous
Formal Verification

(1960s)
Formal Synthesis

(1980s)

Few Examples
3 Easy to provide

Software Testing
(1950s)

PBD / PBE
(1990s)

Research Focus
3 Strong guarantees over all executions

7 Weak guarantees beyond the provided examples

Figure 1.1: Approaches for developing reliable software, and my research focus relative to them.

all executions. However, formulating accurate program invariants manually is too onerous

for developers, and relying on a few input/output examples, which are easy to provide, only

yields weak guarantees. Inferring these invariants would not only simplify the task of formally

verifying their implementation, but also allow for more accurate synthesis of the desired

programs. Figure 1.1 positions my contributions with respect to the state of the art.

During my doctoral program, I have made significant progress on the proposed goals. In

this thesis, I present three techniques based on the Pair principles, instantiated as PIE and

LoopInvGen [PSM16] and FlashProfile [PJP18], which suggest program invariants from

a set of tests, or program inputs respectively.

Chapter 2〉 Learning Program Invariants from Test Executions [PSM16]

In this chapter, I present a technique for learning likely program invariants from a set of test

executions. This approach can be used for inferring both likely specifications and inductive

invariants. I demonstrate that this technique finds errors in documented specifications

for OCaml library functions, and allows for a more expressive and less onerous form of

automated program verification.

7

Chapter 3〉 Learning Input Specifications from Sample Inputs [PJP18]

I present a technique for learning input specifications for large-scale data analysis programs.

These specifications capture syntactic patterns in the provided input data and succinctly

summarize them in form of a data profile. A profile is useful for identifying the input

formats to be handled, when writing (or synthesizing) data processing applications that

deal with large real-life datasets. I demonstrate that availability of data profiles enable

improvements in PBE-based synthesizers, which traditionally only relied on input/output

examples.

Chapter 4〉 Mitigating Overfitting in Synthesis-based Learning [PMN19]

I demonstrate that existing example-driven synthesis techniques are prone to overfitting —

they explain the given data well, but do not generalize well beyond it. I present a formal

notion of overfitting for the example-driven program synthesis setting, and prove that

overfitting is inevitable in program synthesis. I propose two mitigation techniques, inspired

by existing techniques in machine learning literature, and show that they significantly

improve the state-of-the-art synthesizers.

8

CHAPTER 2

Learning Program Invariants

In this chapter I extend the data-driven paradigm for precondition inference: given a piece of

code C along with a predicate Q, the goal is to produce a predicate P whose satisfaction on

entry to C is sufficient to ensure that Q holds after C is executed. Data-driven approaches to

precondition inference [SCI08, GDV15] employ a machine learning algorithm to separate a

set of “good” test inputs (which cause Q to be satisfied) from a set of “bad” ones (which cause

Q to be falsified). Therefore, these techniques are quite general: they can infer candidate

preconditions regardless of the complexity of C and Q, which must simply be executable.

A key limitation of existing data-driven inference algorithms, however, is the need to

provide a set of features, which are predicates over the inputs to C (e.g. x > 0). The

learner then searches for a boolean combination of these features that separates the set G of

“good” inputs from the set B of “bad” inputs. Existing data-driven precondition inference

approaches [SCI08, GDV15] require a fixed set of features to be specified in advance. If these

features are not sufficient to separate G and B, the approaches must either (a) fail to produce

a precondition, (b) produce a precondition that is insufficient (satisfying some “bad” inputs),

or (c) produce a precondition that is overly strong (falsifying some “good” inputs).

In contrast, I show how to iteratively learn useful features on demand as part of the

precondition inference process, thereby eliminating the problem of feature selection. I have

implemented this approach in a tool called PIE (Precondition Inference Engine). Suppose

that at some point PIE has produced a set F of features that is not sufficient to separate G

and B. Observe that in this case there must be at least one pair of tests that conflict : the

9

tests have identical valuations to the features in F but one test is in G and the other is in

B. This leads to a clear criterion for feature learning : the goal is to learn a new feature to

add to F that resolves a given set of conflicts. PIE employs a form of search-based program

synthesis [STB06, SGF10, AGK13] for this purpose, since it can automatically synthesize

rich expressions over arbitrary data types. Once all conflicts are resolved in this manner, the

boolean learner is guaranteed to produce a precondition that is both sufficient and necessary

for the given set of tests.

In addition to making data-driven precondition inference less onerous and more expressive,

the feature learning approach naturally applies to other forms of data-driven invariant

inference that employ positive and negative examples. To demonstrate this, I have built

a novel data-driven algorithm, named LoopInvGen, for inferring provably correct loop

invariants. LoopInvGen uses PIE as a subroutine to generate candidate invariants, thereby

learning features on demand through conflict resolution. In contrast, all prior data-driven

loop invariant inference techniques require a fixed set or template of features to be specified

in advance [GLM14, GNM16, SGH13b, SA14, JKW10, KJD10].

I have implemented PIE for OCaml libraries and LoopInvGen for C++ programs. I

use these implementations to show and evaluate two distinct uses cases for PIE.1

First, PIE can be used in the “black box” setting to aid programmer understanding of

third-party code. For example, suppose a programmer wants to understand the conditions

under which a given library function throws an exception. PIE can automatically produce a

likely precondition for an exception to be thrown, which is guaranteed to be both sufficient

and necessary over the set of test inputs that were considered. I evaluate this use case by

inferring likely preconditions for the functions in several widely used OCaml libraries. The

inferred preconditions match the English documentation in the vast majority of cases and in

two cases identify behaviors that are absent from the documentation.

1 PIE is now exposed as a library within LoopInvGen: https://github.com/SaswatPadhi/LoopInvGen.

The original benchmarks and results are still available at https://github.com/SaswatPadhi/PIE.

10

https://github.com/SaswatPadhi/LoopInvGen
https://github.com/SaswatPadhi/PIE

Second, PIE-based loop invariant inference can be used in the “white box” setting, in

conjunction with the standard weakest precondition computation [DDD76], to automatically

verify that a program meets its specification. My C++ implementation is able to automatically

verify several benchmark programs used in the evaluation of three recent approaches to

loop invariant inference [DDL13, SA14, GNM16]. These programs require loop invariants

involving both linear and non-linear arithmetic as well as operations on strings. The only

prior techniques that have demonstrated such generality require a fixed set or template of

features to be specified in advance.

The rest of the chapter is structured as follows. Section 2.1 overviews PIE and LoopIn-

vGen informally by example, and Section 2.2 describes these algorithms precisely. Section 2.3

presents an extensive experimental evaluation, and Section 2.4 compares the presented

techniques with prior work in this area.

2.1 Overview

This section describes PIE through a running example. The sub function in the String

module of the OCaml standard library takes a string s and two integers i1 and i2 and

returns a substring of the original one. A caller of sub must provide appropriate arguments

for a crash-free execution, or else an Invalid_argument exception is raised. PIE can be used

to automatically infer a predicate that characterizes the set of valid arguments.

My OCaml implementation of precondition inference using PIE takes three inputs: a

function f of type ’a -> ’b; a set T of test inputs of type ’a, which can be generated using

any desired method; and a postcondition Q, which is simply a function of type ’a -> ’b

result -> bool. A ’b result either has the form Ok v where v is the result value of type

’b from f, or Exn e where e is the exception thrown by f. By executing f on each test

input in T to obtain a result and then executing Q on each input-result pair, T is partitioned

into a set G of “good” inputs that cause Q to be satisfied and a set B of “bad” inputs that

11

cause Q to be falsified. Finally, PIE is given the sets G and B, with the goal to produce a

predicate that separates them. In this running example, the function f is String.sub and

the postcondition Q is the following:

fun arg res ->

match res with

| Exn (Invalid_argument _) -> false

| _ -> true

As I show in Section 2.3, when given many random inputs generated by the qcheck library,2

PIE-based precondition inference can automatically produce the following precondition for

String.sub to terminate normally:

i1 >= 0 && i2 >= 0 && i1 + i2 <= (length s)

Though in this running example the precondition is conjunctive, PIE infers arbitrary

conjunctive normal form (CNF) formulas. For example, if the postcondition above is

negated, i.e. to detect an Invalid_argument exception, then PIE will produce the following

complementary precondition:

i1 < 0 || i2 < 0 || i1 + i2 > (length s)

2.1.1 Data-Driven Precondition Inference

This subsection reviews the data-driven approach to precondition inference [SCI08, GDV15]

in the context of PIE. For purposes of this running example, assume that we are given only

the eight test inputs for sub that are listed in the first column of Figure 2.1. The induced set

G of “good” inputs that cause String.sub to terminate normally and set B of “bad” inputs

that cause sub to raise an exception are shown in the last column of the figure.

2 https://github.com/c-cube/qcheck

12

https://github.com/c-cube/qcheck

Tests
Features

Set
i1 < 0 i1 > 0 i2 < 0 i2 > 0

("pie", 0, 0) F F F F G

("pie", 0, 1) F F F T G

("pie", 1, 0) F T F F G

("pie", 1, 1) F T F T G

("pie", -1, 0) T F F F B

("pie", 1, -1) F T T F B

("pie", 1, 3) F T F T B

("pie", 2, 2) F T F T B

Figure 2.1: An example of data-driven precondition inference.

Like prior data-driven approaches, PIE separates G and B by reduction to the problem

of learning a boolean formula from examples [SCI08, GDV15]. This reduction requires a

set of features, which are predicates on the program inputs that will be used as building

blocks for the inferred precondition. As detailed later, PIE’s key innovation is the ability

to automatically learn features on demand, although PIE also allows users to provide an

optional initial set of features.

Suppose that PIE is given the four features shown along the top row of Figure 2.1. Then

each test input induces a feature vector of boolean values that results from evaluating each

feature on that input. For example, the first test induces the feature vector <F,F,F,F>. Each

feature vector is now interpreted as an assignment to a set of four boolean variables, and the

goal is to learn a propositional formula over these variables that satisfies all feature vectors

from G and falsifies all feature vectors from B.

There are many algorithms for learning boolean formulas by example. PIE uses a simple

but effective probably approximately correct (PAC) algorithm that can learn an arbitrary

conjunctive normal form (CNF) formula and is biased toward small formulas [KVV94]. The

resulting precondition is guaranteed to be both sufficient and necessary for the given test

inputs, but there are no guarantees for other inputs.

13

2.1.2 Feature Learning via Program Synthesis

At this point in the running example, there is a problem: there is no boolean function on

the current set of features that is consistent with the given examples! This situation occurs

exactly when two test inputs conflict : they induce identical feature vectors, but one test is in

G while the other is in B. For example, in Figure 2.1 the tests ("pie",1,1) and ("pie",1,3)

conflict; therefore no boolean function over the given features can distinguish between them.

Prior data-driven approaches to precondition inference require a fixed set of features

to be specified in advance. Therefore, whenever two tests conflict they must produce a

precondition that violates at least one test. The approach of Sankaranarayanan et al. [SCI08]

learns a decision tree using the ID3 algorithm [Qui86], which minimizes the total number

of misclassified tests. The approach of Gehr et al. [GDV15] strives to produce sufficient

preconditions and so returns a precondition that falsifies all “bad” tests while minimizing the

misclassification of “good” tests.

In the running example, both prior approaches will produce a predicate equivalent to the

following one, which misclassifies one “good” test:

!(i1 < 0) && !(i2 < 0) && !((i1 > 0) && (i2 > 0))

This precondition captures the actual lower-bound requirements on i1 and i2. However,

it includes an upper-bound requirement that is both overly restrictive, requiring at least one

of i1 and i2 to be zero, and insufficient (for some unobserved inputs), since it is satisfied

by erroneous inputs such as ("pie",0,5). Further, using more tests does not help. On a

test suite with full coverage of the possible “good” and “bad” feature vectors, an approach

that falsifies all “bad” tests must require both i1 and i2 to be zero, obtaining sufficiency but

ruling out almost all “good” inputs. The ID3 algorithm will produce a decision tree that is

larger than the original one, due to the need for more case splits over the features, and this

tree will be either overly restrictive, insufficient, or both.

14

In contrast to these approaches, PIE uses a form of automatic feature learning, which

augments the set of features in a targeted manner on demand. The key idea is to leverage the

fact that there is a clear criterion for new features — they must resolve conflicts. Therefore,

PIE first generates new features to resolve any conflicts, and it then uses the approach

described in Section 2.1.1 to produce a precondition that is consistent with all tests.

Let a conflict group be a set of tests that induce the same feature vector and that

participate in a conflict (i.e. at least one test is in G and one is in B). PIE’s feature learner

uses a form of search-based program synthesis [AGK13, FCD15] to generate a feature that

resolves all conflicts in a given conflict group. Given a set of constants and operations for

each type of data in the tests, the feature learner enumerates candidate boolean expressions

in order of increasing size until it finds one that separates the “good” and “bad” tests in the

given conflict group. The feature learner is invoked repeatedly until all conflicts are resolved.

In Figure 2.1, three tests induce the same feature vector and participate in a conflict.

Thus, the feature learner is given these three input-output examples: (("pie",1,1), T),

(("pie",1,3), F), and (("pie",2,2), F). Various predicates are consistent with these

examples, including the “right” one i1 + i2 <= (length s) and less useful ones like i1 +

i2 != 4. However, overly specific predicates are less likely to resolve a conflict group that is

sufficiently large; the small conflict group in the running example is due to the use of only

eight test inputs. Further, existing synthesis engines bias against such predicates by assigning

constants a larger “size” than variables [AGK13].

PIE with feature learning is strongly convergent : if there exists a predicate that separates

G and B and is expressible in terms of the constants and operations given to the feature

learner, then PIE will eventually (ignoring resource limitations) find such a predicate. PIE’s

search space is limited to predicates that are expressible in the “grammar” given to the feature

learner. However, each type typically has a standard set of associated operations, which

can be provided once and reused across many invocations of PIE. For each such invocation,

feature learning automatically searches an unbounded space of expressions in order to produce

15

targeted features. For example, the feature i1 + i2 <= (length s) for String.sub in the

running example is automatically constructed from the operations + and <= on integers and

length on strings, obviating the need for users to manually craft this feature in advance.

The feature learning approach could itself be used to perform precondition inference in

place of PIE, given all tests rather than only those that participate in a conflict. However, as

detailed in Section 2.3 the separation of feature learning and boolean learning is critical for

scalability. The search space for feature learning is exponential in the maximum feature size, so

attempting to synthesize entire preconditions can quickly hit resource limitations. PIE avoids

this problem by decomposing precondition inference into two subproblems: (a) generating

rich features over arbitrary data types, and (b) generating a rich boolean structure over a

fixed set of black-box features.

2.1.3 Feature Learning for Loop Invariant Inference

string sub(string s, int i1, int i2) {

assume(i1 >= 0 && i2 >= 0 &&

i1+i2 <= s.length());

int i = i1;

string r = "";

while (i < i1+i2) {

assert(i >= 0 && i < s.length());

r = r + s.at(i);

i = i + 1;

}

return r;

}

Figure 2.2: A C++ implementation of sub.

The feature learning approach also applies to

other forms of data-driven invariant inference

that employ positive and negative examples,

and hence can have conflicts. To illustrate

this, I have built a novel algorithm called

LoopInvGen for inferring loop invariants

that are sufficient to prove that a program

meets its specification. The algorithm employs

PIE as a subroutine, thereby learning features

on demand as described above. In contrast,

all prior data-driven loop invariant inference

techniques require a fixed set or template of

features to be specified in advance [GLM14,

GNM16, SGH13b, SA14, JKW10, KJD10].

16

To continue the running example, suppose that I have inferred a likely precondition for

the sub function to execute without error and want to verify its correctness for the C++

implementation of sub shown in Figure 2.2.3 As is standard, I use the function assume(P) to

encode the precondition; executions that do not satisfy P are silently ignored. I would like to

automatically prove that the assertion inside the while loop never fails (which implies that

the subsequent access s.at(i) is within bounds). However, doing so requires an appropriate

loop invariant to be inferred, which involves both integer and string operations. To my

knowledge, the only previous technique that has been demonstrated to infer such invariants

employs a random search over a fixed set of features [SA14].

In contrast, the LoopInvGen algorithm can infer an appropriate loop invariant without

being given any features as input. The algorithm is inspired by the HOLA loop invariant infer-

ence engine, a purely static analysis that employs logical abduction via quantifier elimination

to generate candidate invariants [DDL13]. LoopInvGenuses a similar approach but does

not require the logic of invariants to support quantifier elimination and instead leverages PIE

to generate candidates. HOLA’s abduction engine generates multiple candidates, and HOLA

performs a backtracking search over them. PIE instead generates a single precondition, but I

show how to iteratively augment the set of tests given to PIE in order to refine its result. I

have implemented LoopInvGen for C++ programs.

The LoopInvGen algorithm has three main components. First, a standard program

verifier V for loop-free programs: given code C along with a precondition P and post-

condition Q, V generates the formula P ⇒ WP(C,Q), where WP denotes the weakest

precondition [DDD76]. Then V checks validity of this formula by querying an SMT solver

that supports the necessary logical theories, which either indicates validity or provides a

counterexample.

Second, PIE and the verifier V are used to build the VPreGen algorithm for generating

provably sufficient preconditions for loop-free programs, via counterexample-driven refine-

3 Note that + is overloaded as both addition and string concatenation in C++.

17

ment [CGJ00]. Given code C, a postcondition Q, and test sets G and B, VPreGen invokes

PIE to generate a candidate precondition P . If the verifier V proves the sufficiency of P for

C and Q, then we terminate. Otherwise, the counterexample from the verifier is incorporated

as a new test in the set B, and the process iterates. PIE’s feature learning automatically

expands the search space of preconditions whenever a new test creates a conflict.

Finally, the LoopInvGen algorithm iteratively invokes VPreGen to produce candidate

loop invariants until it finds one that is sufficient to verify the given program. I illustrate

LoopInvGen in the running example, where the inferred loop invariant I(i, i1, i2, r, s) must

satisfy the following three properties:

1. The invariant should hold when the loop is first entered:

(i1 ≥ 0 ∧ i2 ≥ 0 ∧ i1 + i2 ≤ s.length() ∧ i = i1 ∧ r = “” ⇒ I(i, i1, i2, r, s)

2. The invariant should be inductive:

I(i, i1, i2, r, s) ∧ i < i1 + i2 ⇒ I(i+ 1, i1, i2, r + s.at(i), s)

3. The invariant should be strong enough to prove the assertion:

I(i, i1, i2, r, s) ∧ i < i1 + i2 ⇒ 0 ≤ i < s.length()

My example involves both linear arithmetic and string operations, so the program

verifier V must use an SMT solver that supports both theories, such as Z3-Str [ZZG13] or

CVC4 [LRT14].

To generate an invariant satisfying the above properties, LoopInvGen first asks VPre-

Gen to find a precondition to ensure that the assertion will not fail in the following program,

which represents the third constraint above:

18

assume(i < i1 + i2);

assert(0 <= i && i < s.length());

Given a sufficiently large set of test inputs, VPreGen generates the following precondition,

which is simply a restatement of the assertion itself:

0 <= i && i < s.length()

While this candidate invariant is guaranteed to satisfy the third constraint, an SMT solver

can show that it is not inductive. Therefore VPreGen is used again to iteratively strengthen

the candidate invariant until it is inductive. For example, in the first iteration, VPreGen

is asked to infer a precondition to ensure that the assertion will not fail in the following

program:

assume(0 <= i && i < s.length());

assume(i < i1 + i2);

r = r + s.at(i);

i = i+1;

assert(0 <= i && i < s.length());

This program corresponds to the second constraint above, but with I replaced by the current

candidate invariant. VPreGen generates the precondition i1+i2 <= s.length() for this

program, which is conjoined to the current candidate to obtain a new candidate invariant:

0 <= i && i < s.length() && i1+i2 <= s.length()

This candidate is inductive, so the iteration stops.

Finally, the verifier is asked if the candidate satisfies the first constraint above. In this case

it does, so a valid loop invariant has been found, thereby proving that the code’s assertion

will never fail. If instead the verifier provides a counterexample, then this counterexample is

incorporated as a new test input and the entire process of finding a loop invariant restarts.

19

2.2 Algorithms

In this section I describe data-driven precondition inference and loop invariant inference

algorithms in more detail.

2.2.1 Precondition Inference

PreGen(C: Code, Q: Predicate, T : Tests) : Predicate

Returns: A precondition that holds over all tests in T

1: Tests (G,B) := partitionTests(C,Q,T)

2: return PIE(G,B)

Figure 2.3: Algorithm for precondition generation.

Figure 2.3 presents the algorithm for pre-

condition generation using PIE, which I

call PreGen. We are given a code snip-

pet C, which is assumed not to make any

internal non-deterministic choices, and a

postcondition Q, such as an assertion. We

are also given a set of test inputs T for C,

which can be generated by any means, for example a fuzzer, a symbolic execution engine, or

manually written unit tests. The goal is to infer a precondition P such that the execution

of C results in a state satisfying Q if and only if it begins from a state satisfying P . In

other words, we require a predicate P that satisfies the Hoare triple {P}C{Q}. PreGen

guarantees that P will be both sufficient and necessary on the given set of tests T but makes

no guarantees for other inputs.

The function partitionTests in Figure 2.3 executes the tests in T in order to partition

them into a sequence G of “good” tests, which cause C to terminate in a state that satisfies

Q, and a sequence B of “bad” tests, which cause C to terminate in a state that falsifies Q

(line 1). The precondition is then obtained by invoking PIE, which is discussed next.

Figure 2.4 describes the overall structure of PIE, which returns a predicate that is

consistent with the given set of tests. The initial set F of features is empty, though my

implementation optionally accepts an initial set of features from the user (not shown in the

20

figure). For example, such features could be generated based on the types of the input data,

the branch conditions in the code, or by leveraging some knowledge of the domain.

PIE(G: Tests, B: Tests)

Returns: A predicate P such that P (t) for all t ∈ G

and ¬P (t) for all t ∈ B

1: Features F := {}

2: repeat

3: FeatureVectors V + := makeFV(F ,G)

4: FeatureVectors V − := makeFV(F ,B)

5: Conflict X := getConflict(V +, V −, G,B)

6: if X 6= None then

7: F := F ∪ FeatureLearn(X)

8: until X = None

9: φ := BoolLearn(V +, V −)

10: return substitute(F , φ)

Figure 2.4: The core PIE algorithm.

Regardless, PIE then iteratively performs

the loop on lines 2 – 9. First it creates a fea-

ture vector for each test in G and B (lines 3

and 4). The ith element of the sequence V +

is a sequence that stores the valuation of the

features on the ith test in G. Formally, V + =

makeFV(F,G) ⇐⇒ ∀i, j. (V +
i)j = Fj(Gi).

Here I use the notation Sk to denote the kth

element of the sequence S, and Fj(Gi) de-

notes the boolean result of evaluating feature

Fj on test Gi. V − is created in an analogous

manner given the set B.

A feature vector v is said to be a conflict if

it appears in both V + and V −, i.e. ∃i, j.V +
i =

V −j = v. The function getConflict returns None if there are no conflicts. Otherwise it

selects one conflicting feature vector v and returns a pair of sets X = (X+, X−), where X+ is

a subset of G whose associated feature vector is v and X− is a subset of B whose associated

feature vector is v. Next PIE invokes the feature learner on X, which uses a form of program

synthesis to produce a new feature f such that ∀t ∈ X+. f(t) and ∀t ∈ X−.¬f(t). This new

feature is added to the set F of features, thus resolving the conflict.

The above process iterates, identifying and resolving conflicts until there are no more.

PIE then invokes the function BoolLearn, which learns a propositional formula φ over |F |

variables such that ∀v ∈ V +. φ(v) and ∀v ∈ V −.¬φ(v). Finally, the precondition is created

by substituting each feature for its corresponding boolean variable in φ.

21

Discussion Before describing the algorithms for feature learning and boolean learning,

Note some important aspects of the overall algorithm. First, like prior data-driven approaches,

PreGen and PIE are very general. The only requirement on the code C in Figure 2.3 is

that it be executable, in order to partition T into the sets G and B. The code itself is not

even an argument to the function PIE. Therefore, PreGen can infer preconditions for any

code, regardless of how complex it is. For example, the code can use idioms that are hard

for automated constraint solvers to analyze, such as non-linear arithmetic, intricate heap

structures with complex sharing patterns, reflection, and native code. Indeed, the source code

itself need not even be available. The postcondition Q similarly must simply be executable

and so can be arbitrarily complex.

Second, PIE can be viewed as a hybrid of two forms of precondition inference. Prior

data-driven approaches to precondition inference [SCI08, GDV15] perform boolean learning

but lack feature learning, which limits their expressiveness and accuracy. On the other hand,

a feature learner based on program synthesis [STB06, SGF10, AGK13] can itself be used

as a precondition inference engine without boolean learning, but the search space grows

exponentially with the size of the required precondition. PIE uses feature learning only to

resolve conflicts, leveraging the ability of program synthesis to generate expressive features

over arbitrary data types, and then uses boolean learning to scalably infer a concise boolean

structure over these features.

Due to this hybrid nature of PIE, a key parameter in the algorithm is the maximum

number c of conflicting tests to allow in the conflict group X at line 5 in Figure 2.4. If the

conflict groups are too large, then too much burden is placed on the feature learner, which

limits scalability. For example, a degenerate case is when the set of features is empty, in

which case all tests induce the empty feature vector and are in conflict. Therefore, if the set

of conflicting tests that induce the same feature vector has a size greater than c, a random

subset of size c is chosen to provide to the feature learner. In Section 2.3 different values for

c are empirically evaluated.

22

FeatureLearn(X+: Tests, X−: Tests)

Returns: A feature f such that f(t) for all t ∈ X+

and ¬f(t) for all t ∈ X−

1: Operations O := getOperations()

2: Integer i := 1

3: loop

4: Features F := featuresOfSize(i, O)

5: if ∃f ∈ F. (∀t ∈ X+. f(t) ∧ ∀t ∈ X−.¬f(t)) then

6: return f

7: i := i + 1

Figure 2.5: The feature learning algorithm.

Feature Learning Figure 2.5 describes

my approach to feature learning. The algo-

rithm is a simplified version of the Escher

program synthesis tool [AGK13], which

produces functional programs from exam-

ples. Like Escher, it requires a set of op-

erations for each type of input data, which

are used as building blocks for synthesized

features. By default, FeatureLearn in-

cludes operations for primitive types and

for lists. For example, integer operations

include 0 (a nullary operation), +, and <=,

while list operations include [], ::, and length. Users can easily add their own operations,

for these as well as other types of data.

Given this set of operations, FeatureLearn simply enumerates all possible features

in order of the size of their abstract syntax trees. Before generating features of size i + 1,

it checks whether any feature of size i completely separates the tests in X+ and X−; if so,

that feature is returned. The process can fail to find an appropriate feature, either because

no such feature over the given operations exists or because resource limitations are reached;

either way, this causes the PIE algorithm to fail.

Despite the simplicity of this algorithm, it works well in practice, as I show in Section 2.3.

Enumerative synthesis is a good match for learning features, since it biases toward small

features, which are likely to be more general than large features and so helps to prevent against

overfitting. Further, the search space is significantly smaller than that of traditional program

synthesis tasks, since features are simple expressions rather than arbitrary programs. For

example, the algorithm does not attempt to infer control structures such as conditionals, loops,

and recursion, which is a technical focus of much program-synthesis research [AGK13, FCD15].

23

BoolLearn(V +: Feature Vectors, V −: Feature Vectors)

Returns: A formula φ such that φ(v) for all v ∈ V +

and ¬φ(v) for all v ∈ V −

1: Integer n := size of each vector in V + and V −

2: Integer k := 1

3: loop

4: Clauses C := allClausesUpToSize(k, n)

5: C := filterInconsistentClauses(C, V +)

6: C := greedySetCover(C, V −)

7: if C 6= None then return C

8: k := k + 1

Figure 2.6: The boolean function learning algorithm.

Boolean Function Learning I use

a standard algorithm for learning a

small CNF formula that is consistent

with a given set of boolean feature vec-

tors [KVV94]; it is described in Fig-

ure 2.6. Recall that a CNF formula is a

conjunction of clauses, each of which

is a disjunction of literals. A literal

is either a propositional variable or its

negation. The algorithm returns a CNF

formula over a set x1, . . . , xn of propo-

sitional variables, where n is the size of

each feature vector (line 1). The algo-

rithm first attempts to produce a 1-CNF formula (i.e. a conjunction), and it increments

the maximum clause size k iteratively until a formula is found that is consistent with all

feature vectors. Since BoolLearn is only invoked once all conflicts have been removed (see

Figure 2.4), this process is guaranteed to succeed eventually. Given a particular value of k,

the learning algorithm first generates a set C of all clauses of size k or smaller over x1, . . . , xn

(line 4), implicitly representing the conjunction of these clauses. In line 5, all clauses that are

inconsistent with at least one of the “good” feature vectors (i.e. one of the vectors in V +)

are removed from C. A clause c is inconsistent with a “good” feature vector v if v falsifies c,

formally denoted as:

∀1 ≤ i ≤ n.(xi ∈ c⇒ vi = false) ∧ (¬xi ∈ c⇒ vi = true)

At line 6, C is the strongest k-CNF formula that is consistent with all “good” feature vectors.

24

Finally, line 6 weakens C while still falsifying all of the “bad” feature vectors (i.e. the

vectors in V −). In particular, the goal is to identify a minimal subset C ′ of C where for each

v ∈ V −, there exists c ∈ C ′ such that v falsifies c. This problem is equivalent to the classic

minimum set cover problem, which is NP-complete. Therefore, the greedySetCover

function on line 6 uses a standard heuristic for that problem, iteratively selecting the clause

that is falsified by the most “bad” feature vectors that remain, until all such feature vectors

are “covered.” This process will fail to cover all “bad” feature vectors if there is no k-CNF

formula consistent with V + and V −, in which case k is incremented; otherwise the resulting

set C is returned as the CNF formula.

Because the boolean learner treats features as black boxes, this algorithm is unaffected by

their sizes. Rather, the search space is O(nk), where n is the number of features and k is

the maximum clause size, and in practice k is a small constant. Though I have found this

algorithm to work well in practice, there are many other algorithms for learning boolean

functions from examples. As long as they can learn arbitrary boolean formulas, then I expect

that they would also suffice.

Properties As described above, the precondition returned by PIE is guaranteed to be

both necessary and sufficient for the given set of test inputs. Furthermore, PIE is strongly

convergent : if there exists a predicate that separates G and B and is expressible in terms of

the constants and operations given to the feature learner, then PIE will eventually (ignoring

resource limitations) find and return such a predicate.

To see why PIE is strongly convergent, note that FeatureLearn (Figure 2.5) performs

an exhaustive enumeration of possible features. By assumption a predicate that separates G

and B is expressible in the language of the feature learner, and that predicate also separates

any sets X+ and X− of conflicting tests, since they are respectively subsets of G and B.

Therefore each call to FeatureLearn on line 7 in Figure 2.4 will eventually succeed, reducing

the number of conflicting tests and ensuring that the loop at line 2 eventually terminates. At

25

that point, there are no more conflicts, so there is some CNF formula over the features in F

that separates G and B, and the boolean learner will eventually find it.

2.2.2 Loop Invariant Inference

VPreGen(C: Code, Q: Predicate, G: Tests)

Returns: A precondition P such that P (t) for all t in G

and {P}C{Q} holds

1: Tests B := {}

2: repeat

3: P := PIE(G,B)

4: t := verify(P ,C,Q)

5: B := B ∪ {t}

6: until t = None

7: return P

Figure 2.7: Verified precondition generation.

As described in Section 2.1.3, my loop

invariant inference engine relies on an al-

gorithm VPreGen that generates prov-

ably sufficient preconditions for loop-free

code. The VPreGen algorithm is shown

in Figure 2.7. In the context of loop in-

variant inference (see below), VPreGen

will always be passed a set of “good” tests

to use and will start with no “bad” tests,

so I specialize the algorithm to that set-

ting. The VPreGen algorithm assumes

the existence of a verifier for loop-free programs. If the verifier can prove the sufficiency of

a candidate precondition P generated by PIE (lines 3-4), it returns None and we are done.

Otherwise the verifier returns a counterexample t, which has the property that P (t) is true

but executing C on t ends in a state that falsifies Q. Therefore t is added to the set B of

“bad” tests and the algorithm iterate.

The LoopInvGen algorithm for loop invariant inference is shown in Figure 2.8. For

simplicity, I restrict the presentation to code snippets of the form

C = assume P ; while E {CLF} ; assert Q

26

LoopInvGen(C: Code, T : Tests)
Returns: A loop invariant that is sufficient to verify that C’s assertion never fails.

Require: C = assume P ; while E {CLF} ; assert Q

1: G := loopHeadStates(C, T)

2: loop

3: I := VPreGen([assume ¬E], Q, G)

4: while ¬{I ∧ E}CLF{I} do

5: I ′ := VPreGen([assume I ∧ E;CLF], I, G)

6: I := I ∧ I ′

7: t := Valid(P ⇒ I)

8: if t = None then return I

9: G := G ∪ loopHeadStates(C, {t})

Figure 2.8: Loop invariant inference using PIE.

where CLF is loop-free. My implementation also handles code with multiple and nested loops,

by iteratively inferring invariants for each loop encountered in a backward traversal of the

program’s control-flow graph.

The goal of LoopInvGen is to infer a loop invariant I which is sufficient to prove that the

Hoare triple {P}(while E{CLF}){Q} is valid. In other words, the invariant I must satisfy

the following three constraints:

P ⇒ I

{I ∧ E} CLF {I}

I ∧ ¬E ⇒ Q

Given a test suite T for C, LoopInvGen first generates a set of tests for the loop by

logging the program state every time the loop head is reached (line 1). In other words, if ~x

27

denotes the set of program variables the following instrumented version of C is executed on

each test in T :

assume P ; log ~x ; while E {CLF ; log ~x} ; assert Q

If the Hoare triple {P}(while E{CLF}){Q} is valid, then all test executions are guaranteed

to pass the assertion, so all logged program states will belong to the set G of passing tests. If

a test fails the assertion then no valid loop invariant exists, and the algorithm aborts (not

shown in the figure).

With this new set G of tests, LoopInvGen first generates a candidate invariant that

meets the third constraint above by invoking VPreGen on line 3. The inner loop (lines

4-7) then strengthens I until the second constraint is met. If the generated candidate also

satisfies the first constraint (line 8), then a sufficient invariant has been found. Otherwise a

counterexample t satisfying P ∧ ¬I is obtained, which is used to collect new program states

as additional tests (line 12), and the process iterates. The verifier for loop-free code is used

on lines 3 (inside VPreGen), 4 (to check the Hoare triple), and 5 (inside VPreGen), and

the underlying SMT solver is used on line 8 (the validity check).

Note the interplay of strengthening and weakening in the LoopInvGen algorithm. Each

iteration of the inner loop strengthens the candidate invariant until it is inductive. However,

each iteration of the outer loop uses a larger set G of passing tests. Because PIE is guaranteed

to return a precondition that is consistent with all tests, the larger set G has the effect of

weakening the candidate invariant. In other words, candidates get strengthened, but if they

become stronger than P in the process then they will be weakened in the next iteration of

the outer loop.

Properties Both the VPreGen and LoopInvGen algorithms are sound : VPreGen(C,

Q, G) returns a precondition P such that {P}C{Q} holds, and LoopInvGen(C, T) returns

28

a loop invariant I that is sufficient to prove that {P}(while E {CLF}){Q} holds, where

C = assume P ; while E {CLF} ; assert Q. However, neither algorithm is guaranteed to

return the weakest such predicate.

VPreGen(C, Q, G) is strongly convergent : if there exists a precondition P that is

expressible in the language of the feature learner such that {P}C{Q} holds and P (t) holds

for each t ∈ G, then VPreGen will eventually find such a precondition.

To see why, first note that by assumption each test in G satisfies P , and since {P}C{Q}

holds, each test that will be put in B at line 5 in Figure 2.7 falsifies P (since each such test

causes Q to be falsified). Therefore P is a separator for G and B, so each call to PIE at line

3 terminates due to the strong convergence result described earlier. Suppose P has size s.

Then each call to PIE from VPreGen will generate features of size at most s, since P itself

is a valid separator for any set of conflicts. Further, each call to PIE produces a logically

distinct precondition candidate, since each call includes a new test in B that is inconsistent

with the previous candidate. Since the feature learner has a finite number of operations for

each type of data, there are a finite number of features of size at most s and so also a finite

number of logically distinct boolean functions in terms of such features. Hence eventually P

or another sufficient precondition will be found.

LoopInvGen is not strongly convergent: it can fail to terminate even when an expressible

loop invariant exists. First, the iterative strengthening loop (lines 4-7 of Figure 2.8) can

generate a VPreGen query that has no expressible solution, causing VPreGen to diverge.

Second, an adversarial sequence of counterexamples from the SMT solver (line 9 of Figure 2.8)

can cause LoopInvGen’s outer loop to diverge. Nonetheless, my experimental results below

indicate that the algorithm performs well in practice.

29

2.3 Evaluation

I have evaluated PIE’s ability to infer preconditions for black-box OCaml functions and

LoopInvGen’s ability to infer sufficient loop invariants for verifying C++ programs.

2.3.1 Precondition Inference

Experimental Setup I have implemented the PreGen algorithm described in Figure 2.3

in OCaml. I use PreGen to infer preconditions for all of the first-order functions in three

OCaml modules: List and String from the standard library, and BatAvlTree from the widely

used batteries library.4 My test generator and feature learner do not handle higher-order

functions. For each function, I generate preconditions under which it raises an exception.

Further, for functions that return a list, string, or tree, I generate preconditions under which

the result value is empty when it returns normally. Similarly, for functions that return

an integer (boolean) I generate preconditions under which the result value is 0 (false)

when the function returns normally. A recent study finds that roughly 75% of manually

written specifications are predicates like these, which relate to the presence or absence of

data [SDC14].

For feature learning I use a simplified version of the Escher program synthesis tool [AGK13]

that follows the algorithm described in Figure 2.5. Escher already supports operations on

primitive types and lists; I augment it with operations for strings (e.g. get, has, sub) and

AVL trees (e.g. left_branch, right_branch, height). For the set T of tests, I generate

random inputs of the right type using the qcheck OCaml library. Analogous to the small

scope hypothesis [Jac12], which says that “small inputs” can expose a high proportion of

program errors, I find that generating many random tests over a small domain exposes a wide

range of program behaviors. For my tests I generate random integers in the range [−4, 4],

lists of length at most 5, trees of height at most 5 and strings of length at most 12.

4 http://batteries.forge.ocamlcore.org

30

http://batteries.forge.ocamlcore.org

In total I attempt to infer preconditions for 101 function-postcondition pairs. Each

attempt starts with no initial features and is allowed to run for at most one hour and use up

to 8GB of memory. Two key parameters to my algorithm are the number of tests to use and

the maximum size of conflict groups to provide the feature learner. Empirically I have found

6400 tests and conflict groups of maximum size 16 to provide good results (see below for an

evaluation of other values of these parameters).

Results Under the configuration described above, PreGen generates correct preconditions

in 87 out of 101 cases. By “correct” I mean that the precondition fully matches the English

documentation, and possibly captures actual behaviors not reflected in that documentation.

The latter happens for two BatAvlTree functions: the documentation does not mention that

split_leftmost and split_rightmost will raise an exception when passed an empty tree.

Table 2.1 shows some of the more interesting preconditions that PreGen inferred,

along with the number of synthesized features for each. For example, it infers an accurate

precondition for String.index_from(s,i,c), which returns the index of the first occurrence

of character c in string s after position i, through a rich boolean combination of arithmetic

and string functions. As another example, PreGen automatically discovers the definition

of a balanced tree, since BatAvlTree.create throws an exception if the resulting tree is

not balanced. Prior approaches to precondition inference [SCI08, GDV15] can only capture

these preconditions if they are provided with exactly the right features (e.g. height(t1) >

(height(t2) + 1)) in advance, while PreGen learns the necessary features on demand.

The 14 cases that either failed due to time or memory limits or that produce an incorrect

or incomplete precondition were of three main types. The majority (10 out of 14) require

universally quantified features, which are not supported by my feature learner. For example,

List.flatten(l) returns an empty list when each of the inner lists of l is empty. In a

few cases the inferred precondition is incomplete due to my use of small integers as test

inputs. For example, I do not infer that String.make(i,c) throws an exception if i is greater

31

Case Postcondition Learned Features

String module functions

set(s,i,c)
throws exception 3

(i < 0) ∨ (len(s) ≤ i)

sub(s,i1,i2)
throws exception 3

(i1 < 0) ∨ (i2 < 0) ∨ (i1 > len(s)− i2)

index(s,c)
result = 0 2

has(get(s, 0), c)

index_from(s,i,c)
throws exception 4

(i < 0) ∨ (i > len(s)) ∨ ¬ has(sub(s, i, len(s)− i), c)

List module functions

nth(l, n)
throws exception 2

(0 > n) ∨ (n ≥ len(l))

append(l1, l2)
empty(result) 2

empty(l1) ∧ empty(l2)

BatAvlTree module functions

create (t1, v, t2)
throws exception 6

height(t1) > (height(t2) + 1) ∨ height(t2) > (height(t1) + 1)

concat(t1, t2)
empty(result) 2

empty(t1) ∧ empty(t2)

Table 2.1: A sample of inferred preconditions for OCaml library functions.

32

 0

 10

 20

 30

 40

 50

1600 3200 6400 12800
1600 3200 6400 12800

1600 3200 6400 12800

Po
st

co
nd

iti
on

s
Correct
Incorrect
Resource Limit

BatAvlTreeStringList

 0

 10

 20

 30

 40

 50

2 16 all 2 16 all 2 16 all

Po
st

co
nd

iti
on

s

Correct
Incorrect
Resource Limit

BatAvlTreeStringList

Figure 2.9: Comparison of PIE configurations. The left plot shows the effect of different numbers of

tests. The right plot shows the effect of different conflict group sizes.

than Sys.max_string_length. Finally, a few cases produce erroneous specifications for list

functions that employ physical equality, e.g. List.memq. My tests for lists only use primitives

as elements, so they cannot distinguish physical from structural equality.

Configuration Parameter Sensitivity I also evaluated PIE’s sensitivity to the number

of tests and the maximum conflict group size. The left plot in Figure 2.9 shows the results

with varied numbers of tests (and conflict group size of 16). In general, the more tests I use,

the more correct my results. However, with 12,800 tests I incur one additional case that hits

resource limits due to the extra overhead involved.

The right plot in Figure 2.9 shows the results with varied conflict group sizes (and 6400

tests). On the one hand, I can give the feature learner only a single pair of conflicting

tests at a time. As the figure shows, this leads to more cases hitting resource limits and

producing incorrect results versus a conflict group size of 16, due to the higher likelihood of

synthesizing overly specific features. On the other hand, the feature learner can be given all

conflicting tests at once. When starting with no initial features, all tests are in conflict, so

this strategy requires the feature learner to synthesize the entire precondition. As the figure

shows, this approach hits resource limitations more often versus a conflict group size of 16.

33

Size of Features
Number of Features

Eager PIE

Min 2 13 1

Q1 3 29.25 1

Q2 4 55 1

Q3 5.25 541.50 2

Max 13 18051 5

Mean 4.54 1611.80 1.50

SDev 2.65 4055.50 0.92

Table 2.2: Comparison of PIE with an approach that uses eager feature learning. The size of a

feature is the number of nodes in its abstract syntax tree. Each Qi indicates the ith quartile, computed

independently for each column.

For example, this approach fails to generate the preconditions for String.index_from and

BatAvlTree.create shown in Table 2.1. Further, in the cases that do succeed, the average

running time and memory consumption are 11.7 second and 309 MB, as compared to only

1.8 seconds and 66 MB when the conflict group size is 16.

Comparison With Eager Feature Learning PIE generates features lazily as necessary

to resolve conflicts. An alternative approach is to use Escher up front to eagerly generate

every feature for a given program up to some maximum feature size s. These features can

then simply all be passed to the boolean learner. To evaluate this approach, I instrumented

PIE to count the number of candidate features that were generated by Escher each time

it was called.5 For each call to PIE, the maximum such number across all calls to Escher

is a lower bound, and therefore a best-case scenario, for the number of features that would

need to be passed to the boolean learner in an eager approach. It is a lower bound for two

5 All candidates generated by Escher are both type-correct and exception-free, i.e.they do not throw

exceptions on any test inputs.

34

reasons. First, we are assuming that the user can correctly guess the maximum size s of

features to generate in order to produce a precondition that separates the “good” and “bad”

tests. Second, Escher stops generating features as soon as it finds one that resolves the given

conflicts, so in general there will be many features of size s that are not counted.

Table 2.2 shows the results for the 52 cases in my experiment above where PIE produces a

correct answer and at least one feature is generated. Notably, the minimum number of features

generated in the eager approach (13) is more than double the maximum number of features

selected in my approach (5). Nonetheless, for functions that require only simple preconditions,

eager feature learning is reasonably practical. For example, 25% of the preconditions (Min to

Q1 in the table) require 29 or fewer features. However, the number of features generated by

eager feature learning grows exponentially with their maximum size. For example, the top

25% of preconditions (from Q3 to Max) require a minimum of 541 features to be generated

and a maximum of more than 18, 000. Since boolean learning is in general super-linear in the

number n of features (the algorithm I use is O(nk) where k is the maximum clause size), I

expect an eager approach to hit resource limits as the preconditions become more complex.

2.3.2 Loop Invariants for C++ Code

I have implemented the loop invariant inference procedure described in Figure 2.8 for C++

code as a Clang tool.6 As mentioned earlier, my implementation supports multiple and nested

loops. I have also implemented a verifier for loop-free programs using the CVC4 [BCD11] and

Z3-Str [ZZG13] SMT solvers, which support several logical theories including both linear

and non-linear arithmetic and strings. I employ both solvers because their support for both

non-linear arithmetic and strings is incomplete, causing some queries to fail to terminate. I

therefore run both solvers in parallel for two minutes and fail if neither returns a result in

that time.

6 http://clang.llvm.org/docs/LibTooling.html

35

http://clang.llvm.org/docs/LibTooling.html

Case
Calls to
Solvers

Calls to
Escher

Sizes of
Invariants

Analysis
Time

HOLAbenchmarks [DDL13]

01 7 3 11 21

02 43 17 15 27

03 31 22 3,7,15 46

04 4 2 7 18

05 7 3 11 23

06 51 26 9,9 54

07 111 45 19 116

08 4 2 7 18

09 27 18 3,15,7,22 40

10 14 7 28 21

11 21 18 15 22

12 33 19 13,15 45

13 46 30 33 54

14 9 9 31 22

15 26 27 33 39

16 9 10 11 22

17 22 17 15,7 31

18 6 5 15 20

19 18 14 27 32

20 61 24 33 115

21 23 10 19 23

22 16 11 13 22

23 10 7 11 21

24 29 19 1,7,11 40

25 83 47 11,19 142

26 90 32 9,9,9 71

27 32 20 7,3,7 44

28 7 2 3,3 20

29 66 19 11,11 47

30 18 12 35 29

31 - - - -

32 - - - -

33 - - - -

34 30 20 37 25

35 5 4 11 18

36 128 36 11,15,19,11 113

37 13 11 19 22

38 44 38 29 36

39 10 5 11 20

40 30 24 19,17 40

41 17 11 15 27

42 25 15 50 37

43 4 2 7 19

44 14 14 20 26

45 60 33 11,9,9 64

46 12 5 21 24

Case
Calls to
Solvers

Calls to
Escher

Sizes of
Invariants

Analysis
Time

Linear arithmetic benchmarks from ICE [GNM16]

afnp 12 7 11 22

cegar1 16 11 12 30

cegar2 13 11 19 23

cggmp 34 22 143 32

countud 6 4 9 17

dec 4 2 3 17

dillig01 7 3 11 19

dillig03 14 7 15 29

dillig05 7 3 11 21

dillig07 8 4 11 21

dillig12 32 18 13,11 44

dillig15 31 35 55 42

dillig17 24 22 19,11 31

dillig19 19 13 31 32

dillig24 29 18 1,3,11 40

dillig25 57 31 11,19 74

dillig28 7 2 3,3 19

dtuc 9 2 3,3 22

fig1 4 2 7 17

fig3 7 5 7 17

fig9 7 2 7 19

formula22 12 11 16 25

formula25 11 5 15 21

formula27 23 5 19 25

inc2 4 2 7 18

inc 4 2 7 17

loops 19 12 7,7 28

sum1 16 14 21 22

sum3 6 1 3 20

sum4c 41 21 38 32

sum4 6 3 9 17

tacas6 9 8 11 22

trex1 6 2 7,1 19

trex3 9 7 7 23

w1 4 2 7 17

w2 - - - -

Non-linear arithmetic benchmarks from ICE [GNM16]

multiply 25 19 15 41

sqrt - - - -

square 11 7 5 24

String benchmarks [SA14]

a 66 22 110 45

b 6 5 4 10

c 7 4 8 11

d 7 3 9 11

Table 2.3: Experimental results for LoopInvGen. An invariant’s size is the number of nodes in its

abstract syntax tree. The analysis time is in seconds.

36

(HOLA) 07

I : (b = 3i− a) ∧ (n > i ∨ b = 3n− a)

(HOLA) 22

I : (k = 3y) ∧ (x = y) ∧ (x = z)

(ICE linear) dillig12

I1 : (a = b) ∧ (t = 2s ∨ flag = 0) I2 : (x ≤ 2) ∧ (y < 5)

(ICE linear) sum1

I : (i = sn+ 1) ∧ (sn = 0 ∨ sn = n ∨ n ≥ i)

(Strings) c

I : has(r, “a”) ∧ (len(r) > i)

(ICE non-linear) multiply

I : (s = y ∗ j) ∧ (x > j ∨ s = x ∗ y)

Table 2.4: A sample of inferred invariants for C++ benchmarks.

I use the same implementation and configuration for PIE as in the previous experiment.

To generate the tests I employ an initial set of 256 random inputs of the right type. As

described in Section 2.2.2, the algorithm then captures the values of all variables whenever

control reaches the loop head, and I retain at most 6400 of these states.

I evaluate my loop invariant inference engine on multiple sets of benchmarks; the results

are shown in Table 2.3 and a sample of the inferred invariants is shown in Table 2.4. First,

I have used LoopInvGen on all 46 of the benchmarks that were used to evaluate the

HOLA loop invariant engine [DDL13]. These benchmarks require loop invariants that involve

only the theory of linear arithmetic. Table 2.3 shows each benchmark’s name from the

original benchmark set, the number of calls to the SMT solvers, the number of calls to the

feature learner, the size of the generated invariant, and the running time of LoopInvGen in

seconds. LoopInvGen succeeds in inferring invariants for 43 out of 46 HOLA benchmarks,

including three benchmarks which HOLA’s technique cannot handle (cases 15, 19, and 34).

37

By construction, these invariants are sufficient to ensure the correctness of the assertions in

these benchmarks. The three cases on which LoopInvGen fails run out of memory during

PIE’s CNF learning phase.

Second, I have used LoopInvGen on 39 of the benchmarks that were used to evaluate

the ICE loop invariant engine [GNM16, GLM14]. The remaining 19 of their benchmarks

cannot be evaluated with LoopInvGen because they use language features that my program

verifier does not support, notably arrays and recursion. As shown in Table 2.3, I succeed

in inferring invariants for 35 out of the 36 ICE benchmarks that require linear arithmetic.

LoopInvGen infers the invariants fully automatically and with no initial features, while

ICE requires a fixed template of features to be specified in advance. The one failing case is

due to a limitation of the current implementation — I treat boolean values as integers, which

causes PIE to consider many irrelevant features for such values.

I also evaluated LoopInvGen on the three ICE benchmarks whose invariants require

non-linear arithmetic. Doing so simply required allowing the feature learner to generate

non-linear features; such features were disabled for the above tests due to the SMT solvers’

limited abilities to reason about non-linear arithmetic. LoopInvGen was able to generate

sufficient loop invariants for two out of the three benchmarks. My approach fails on the third

benchmark because both SMT solvers fail to terminate on a particular query. However, this

is a limitation of the solvers rather than of LoopInvGen; indeed, if I vary the conflict-group

size, which leads to different SMT queries, then LoopInvGensucceeds on this benchmark.

Third, I have evaluated my approach on the four benchmarks whose invariants require

both arithmetic and string operations that were used to evaluate another recent loop invariant

inference engine [SA14]. As shown in Table 2.3, my approach infers loop invariants for all of

these benchmarks. The prior approach [SA14] requires both a fixed set of features and a fixed

boolean structure for the desired invariants, neither of which is required by my approach.

Finally, I ran all of the above experiments again, but with PIE replaced by my program-

synthesis-based feature learner. This version succeeds for only 61 out of the 89 benchmarks.

38

Further, for the successful cases, the average running time is 567 s and 1895 MB of memory,

versus 28 s and 128 MB (with 573 MB peak memory usage) for the PIE-based approach.

2.4 Related Work

I compare my work against three forms of specification inference in the literature. First,

there are several existing approaches to inferring preconditions given a piece of code and

a postcondition. Closest to PIE are the prior data-driven approaches. Sankaranarayanan

et al. [SCI08] uses a decision-tree learner to infer preconditions from good and bad examples.

Gehr et al. also uses a form of boolean learning from examples, in order to infer conditions

under which two functions commute [GDV15]. As discussed in Section 2.1, the key innovation

of PIE over these works is its support for on-demand feature learning, instead of requiring a

fixed set of features to be specified in advance. In addition to eliminating the problem of feature

selection, PIE’s feature learning ensures that the produced precondition is both sufficient

and necessary for the given set of tests, which is not guaranteed by the prior approaches.

Recently Astorga et al. have also proposed learning stateful preconditions (i.e. those that

not only constrain primitive-type inputs but also non-primitive-type object states) [AMS19].

Their approach guarantees maximality with respect to a given test generator. Astorga et al.

have also proposed a precondition learning approach [ASX18] that uses symbolic analysis.

However, unlike PIE, both of these approaches use a small fixed set of features, and require

white-box access to the source code.

There are also several static approaches to precondition inference. These techniques

can provide provably sufficient (or provably necessary [CCF13]) preconditions. However,

unlike data-driven approaches, they all require the source code to be available and statically

analyzable. The standard weakest precondition computation infers preconditions for loop-free

programs [DDD76]. For programs with loops, a backward symbolic analysis with search

heuristics can yield preconditions [CC77a, CFS09]. Other approaches leverage properties

39

of particular language paradigms [Gia98], require logical theories that support quantifier

elimination [Moy08, DD13], and employ counterexample-guided abstraction refinement (CE-

GAR) [CGJ00] with domain-specific refinement heuristics [SK13, SS14]. Finally, some static

approaches to precondition inference target specific program properties, such as predicates

about the heap structure [LSR07, CDO11] or about function equivalence [KLR10].

Second, I have shown how PIE can be used to build a novel data-driven algorithm

LoopInvGen for inferring loop invariants that are sufficient to prove that a program

meets its specification. Several prior data-driven approaches exist for this problem [JKW10,

KJD10, GLM14, GNM16, KPW15, SNA12, SGH13b, SA14, SSC15, GFM14]. As above,

the key distinguishing feature of LoopInvGen relative to this work is its support for

feature learning. Other than one exception [SNA12], which uses support vector machines

(SVMs) [CV95] to learn new numerical features, all prior works employ a fixed set or template

of features. In addition, some prior approaches can only infer restricted forms of boolean

formulas [SNA12, SGH13b, SA14, SSC15], while LoopInvGen learns arbitrary CNF formulas.

The ICE approach [GLM14] requires a set of “implication counterexamples” in addition to good

and bad examples, which necessitates new algorithms for learning boolean formulas [GNM16].

In contrast, LoopInvGen can employ any off-the-shelf boolean function learner. Unlike

LoopInvGen, ICE is strongly convergent [GLM14]: it restricts invariant inference to a

finite set of candidate invariants that is iteratively enlarged using a dovetailing strategy

that eventually covers the entire search space. Finally, several other data-driven invariant

inference approaches have been proposed recently that use neural network learning [SDR18],

interpolation between forward and backward reachability [LSX17], and solving the more

general constrained-horn-clause (CHC) systems [END18, ZMJ18].

There are also many static approaches to invariant inference. The HOLA [DDL13] loop

invariant generator is based on an algorithm for logical abduction [DD13]; I employed a similar

technique to turn PIE into a loop invariant generator. HOLA requires the underlying logic

of invariants to support quantifier elimination, while LoopInvGen has no such restriction.

40

Standard invariant generation tools that are based on abstract interpretation [CH78, CC77a],

constraint solving [GMR09, CSS03], or probabilistic inference [GJ07] require the number of

disjunctions to be specified manually. Other approaches [FL10, FR94, GR07, GSV08, SIS06,

MR05, GIB12] can handle disjunctions but restrict their number via trace-based heuristics,

custom built abstract domains, or widening. In contrast, LoopInvGen places no a priori

bound on the number of disjunctions.

Third, there has been prior work on data-driven inference of specifications given only

a piece of code as input. For example, Daikon [EPG07] generates likely invariants at

various points within a given program. Other work leverages Daikon to generate candidate

specifications and then uses an automatic program verifier to validate them, eliminating the

ones that are not provable [NE02a, NE02b, SDC14]. As above, these approaches employ a

fixed set or template of features. Unlike precondition inference and loop invariant inference,

which require more information from the programmer (e.g. a postcondition), general invariant

inference has no particular goal and so no notion of “good” and “bad” examples. Hence these

approaches cannot obtain counterexamples to refine candidate invariants and cannot use my

conflict-based approach to learn features.

Finally, the work of Cheung et al. [CSM12], like PIE, combines machine learning and

program synthesis, but for a very different purpose: to provide event recommendations to users

of social media. They use the Sketch system [STB06] to generate a set of recommendation

functions that each classify all test inputs, and then they employ SVMs to produce a linear

combination of these functions. PIE instead uses program synthesis for feature learning, and

only as necessary to resolve conflicts, and then it uses machine learning to infer boolean

combinations of these features that classify all test inputs.

41

2.5 Applications and Extensions

Since its publication in 2016 [PSM16], this automatic on-demand feature learning approach

has been shown to be useful in several other applications across many different domains.

The Alive-Infer work by Menendez et al. [MN17] utilizes our feature learning approach

for inferring sufficient preconditions for peephole optimizations. Unlike PIE, which uses

SMT-Lib [BST10] as the target language for its synthesizer, Alive-Infer uses the Alive

DSL [LMN15] as the target language for preconditions. This tool has been used to improve

the compiler optimization passes within the LLVM compiler infrastructure [LA04], and is

being used by the LLVM developers to implement provably correct compiler optimizations.

Recent work by Barbosa et al. [BRL19] also uses an on-demand feature learning approach

similar to PIE for inferring sufficient loop invariants. However, unlike our approach, which

uses the PAC learning algorithm to combine features to a candidate invariant, their approach

uses decision tree learning.

Beillahi et al. [BCE20] have also used PIE for formally verifying smart contracts written

for blockchain systems. Their work uses Solidity [Woo14b] as the target language for the

synthesizer. Solidity is the most widely used programming language for smart contracts

that run on the Ethereum [Woo14a] virtual machine. They also extend PIE to work with

symbolic examples in addition to concrete examples.

42

CHAPTER 3

Learning Input Specifications

In modern data science, most real-life datasets lack high-quality metadata — they are often

incomplete, erroneous, and unstructured [DS13]. This severely impedes data analysis, even

for domain experts. For instance, a merely preliminary task of data wrangling (importing,

cleaning, and reshaping data) consumes 50 – 80% of the total analysis time [Loh14]. Prior

studies show that high-quality metadata not only help users clean, understand, transform,

and reason over data, but also enable advanced applications, such as compression, indexing,

query optimization, and schema matching [AGN15]. Traditionally, data scientists engage in

data gazing [May07] — they manually inspect small samples of data, or experiment with

aggregation queries to get a bird’s-eye view of the data. Naturally, this approach does not

scale to modern large-scale datasets [AGN15].

Data profiling is the process of generating small but useful metadata (typically as a

succinct summary) for the data [AGN15]. In this work, I focus on syntactic profiling, i.e.

learning structural patterns that summarize the data. A syntactic profile is a disjunction

of regex-like patterns that describe all of the syntactic variations in the data. Each pattern

succinctly describes a specific variation, and is defined by a sequence of atomic patterns or

atoms, such as digits or letters.

While existing tools, such as Microsoft SQL Server Data Tools (Microsoft SSDT) [Cor17d],

and Ataccama [Cor17a] allow pattern-based profiling, they generate a single profile that

cannot be customized. In particular, (a) they use a small predetermined set of atoms, and

43

Reference ID

ISBN: 1-158-23466-X

not_available

doi: 10.1016/S1387-
7003(03)00113-8

...

PMC9473786

ISBN: 0-006-08903-1

doi:

10.13039/100005795

PMC9035311

...

PMC5079771

ISBN: 2-287-34069-6

(a) Sample data

· W_W (5)
· W: N.N/LN-N(N)N-D (11)
· W: D-N-N-L (34)
· W: N.N/N (110)
· W: D-N-N-D (267)
· WN (1024)

Classes: [L]etter, [W]ord, [D]igit, [N]umber

(b) Profile from Ataccama One

· doi:␣+10\.\d\d\d\d\d/\d+ (110)
· .* (113)
· ISBN:␣0-\d\d\d-\d\d\d\d\d-\d (204)
· PMC\d+ (1024)

(c) Profile from Microsoft SSDT

· “not_available” (5)

· “doi:” ␣+ “10.1016/” U D 4 “-” D 4

“(” D 2 “)” D 5 “-” D (11)

· “ISBN:” ␣ D “-” D 3 “-” D 5 “-X” (34)

· “doi:” ␣+ “10.13039/” D+ (110)

· “ISBN:” ␣ D “-” D 3 “-” D 5 “-” D (267)

· “PMC” D 7 (1024)

Classes: [U]ppercase, [D]igit

Superscripts indicate repetition of atoms.
Constant strings are surrounded by quotes.

(d) Default profile from FlashProfile

Table 3.1: Profiles for a set of references7— number of matches for each pattern is shown on the right

do not allow users to supply custom atoms specific to their domains, and (b) they provide

little support for controlling granularity, i.e. the number of patterns in the profile.

I present a novel application of program synthesis techniques to addresses these two key

issues. The implementation, FlashProfile, supports custom user-defined atoms that may

encapsulate arbitrary pattern-matching logic, and also allows users to interactively control

the granularity of generated profiles, by providing desired bounds on the number of patterns.

A Motivating Example Table 3.1(a) shows a fragment of a dataset containing a set

of references in various formats, and its profiles generated by Ataccama(in Table 3.1(b)),

Microsoft SSDT (in Table 3.1(c)), and the tool FlashProfile (in Table 3.1(d)). Syntactic

profiles expose rare variations that are hard to notice by manual inspection of the data,

7 The full dataset is available at https://github.com/SaswatPadhi/FlashProfileDemo/tree/master/

motivating_example.json.

44

https://github.com/SaswatPadhi/FlashProfileDemo/tree/master/motivating_example.json
https://github.com/SaswatPadhi/FlashProfileDemo/tree/master/motivating_example.json

· “not_available” (5)

· “doi:” ␣+ 〈DOI〉 (121)

· “ISBN:” ␣ 〈ISBN10〉 (301)

· “PMC” D 7 (1024)

(a) The auto-suggested profile

· “not_available” (5)
· “doi:” ␣+ “10.1016/” U D 4 “-” D 4 “(” D 2 “)” D 5 “-” D (11)
· “doi:” ␣+ “10.13039/” D+ (110)
· “ISBN:” ␣ 〈ISBN10〉 (301)
· “PMC” D 7 (1024)

(b) A refined profile on requesting 5 patterns

Figure 3.1: Custom atoms,8 and refinement of profiles with FlashProfile

or from simple statistical properties such as distribution of string lengths. For example,

Ataccama reveals a suspicious pattern “W_W”, which matches less than 0.5% of the dataset.

Microsoft SSDT, however, groups this together with other less frequent patterns into a “.*”

pattern. Since Microsoft SSDT does not provide a way of controlling the granularity of the

profile, a user would be unable to further refine the “.*” pattern. FlashProfile shows that

this pattern actually corresponds to missing entries, which read “not_available”.

For this dataset, although Ataccama suggests a profile of the same granularity as

from FlashProfile, the patterns in the profile are overly general. For instance, it may

not be immediately obvious that the pattern W: D-N-N-L maps to ISBNs in the dataset.

FlashProfile further qualifies the W (word) to the constant “ISBN”, and restricts the

[N]umber patterns to D 3 (short for Digit×3) and D 5, and the final [L]etter to the constant “X”.

FlashProfile also allows users familiar with their domains to define custom patterns,

that cluster data in ways that are specific to the domain. For example, the two patterns for

“doi” in Table 3.1(d) are vastly different — one contains letters and parentheses, whereas the

other contains only digits. However, grouping them together makes the profile more readable,

and helps spot outliers differing from the expected patterns. Figure 3.1(a) shows a profile

suggested by FlashProfile when provided with two custom atoms: 〈DOI〉 and 〈ISBN10〉,8

8 〈DOI〉 is defined as the regex 10.\d{4,9}/[-._;()/:A-Z0-9a-z]+.

〈ISBN10〉 is defined as the regex \d-\d{3}-\d{5}-[0-9Xx].

45

with appropriate costs. Users may refine the profile to observe more specific variations within

the DOIs and ISBNs. On requesting one more pattern, FlashProfile unfolds 〈DOI〉, since

the DOIs are more dissimilar to each other than ISBNs, and produces the profile shown in

Figure 3.1(b).

Key Challenges A key barrier to allowing custom atoms is the large search space for

the desirable profiles. Prior tools restrict their atoms to letters and digits, followed by

simple upgrades such as sequences of digits to numbers, and letters to words. However,

this simplistic approach is not effective in the presence of several overlapping atoms and

complex pattern-matching semantics. Moreover, a naïve exhaustive search over all profiles is

prohibitively expensive. Every substring might be generalized in multiple ways into different

atoms, and the search space grows exponentially when composing patterns as sequences of

atoms, and a profile as a disjunction of patterns.

One approach to classifying strings into matching patterns might be to construct decision

trees or random forests [Bre01] with features based on atoms. However features are typically

defined as predicates over entire strings, whereas atoms match specific substrings and may

match multiple times within a string. Moreover, the location of an atomic match within a string

depends on the lengths of the preceding atomic matches within that string. Therefore, this

approach seems intractable since generating features based on atoms leads to an exponential

blow up.

Instead, I propose to address the challenge of learning a profile by first clustering [XW05]

— partitioning the dataset into syntactically similar clusters of strings and then learning a

succinct pattern describing each cluster. This approach poses two key challenges: (a) efficiently

learning patterns for a given cluster of strings over an arbitrary set of atomic patterns provided

by the user, and (b) defining a suitable notion of pattern-based similarity for clustering,

that is aware of the user-specified atoms. For instance, as I show in the motivating example

(Table 3.1 and Figure 3.1), the clustering must be sensitive to the presence of 〈DOI〉 and

46

〈ISBN10〉 atoms. Traditional character-based similarity measures over strings [GF13] are

ineffective for imposing a clustering that is susceptible to high-quality explanations using a

given set of atoms.

Proposed Technique I address both the aforementioned challenges by leveraging recent

advances in inductive program synthesis [GPS17] — an approach for learning programs from

incomplete specifications, such as input-output examples for the desired program.

First, to address challenge (1), I present a novel domain-specific language (DSL) for

patterns, and define a specification over a given set of strings. Users are also allowed to

augment this DSL with custom atoms defined as a regex, or constant string, or a string

predicate (detailed in § 3.3.1) together with a static cost (detailed in § 3.3.3). I then describe

an efficient synthesis procedure for learning patterns that are consistent with the specification,

and a cost function to select compact patterns that are not overly general, out of all patterns

that are consistent with a given cluster of strings.

Second, the cost function for patterns induces a natural syntactic dissimilarity measure

over strings, which is the key to addressing challenge (2). I consider two strings to be similar

if both can be described by a low-cost pattern. Strings requiring overly general / complex

patterns are considered dissimilar. Typical clustering algorithms require computation of

all pairwise dissimilarities [XW05]. However, in contrast to standard clustering scenarios,

computing dissimilarity for a pair of strings not only gives us a numeric measure, but also

a pattern for them. This allows for practical performance optimizations. In particular, I

present a strategy to approximate dissimilarity computations using a small set of carefully

sampled patterns.

To summarize, I present a framework for syntactic profiling based on clustering, that is

parameterized by a pattern learner and a cost function. Figure 3.2 outlines this interaction

model. In the default mode, users simply provide their dataset. Additionally, they may

control the performance vs. accuracy trade-off, define custom atoms, and provide bounds on

47

Approximation
Parameters

Custom Atoms
with Costs

Number of
Patterns

Pattern
Learner

+
Cost Function

Hierarchical
Clustering

Profile

Dataset

Figure 3.2: FlashProfile’s interaction model: thick edges denote input and output to the system,

dashed edges denote internal communication, and thin edges denote optional parameters.

the number of patterns. To enable efficient refinement of profiles based on the given bounds,

I construct a hierarchical clustering [XW05, Section IIB] that may be cut at a suitable height

to extract the desired number of clusters.

Evaluation I have implemented the proposed technique as FlashProfile using PROSE [Cor17e],

also called FlashMeta [PG15], a state-of-the-art inductive synthesis framework. I evaluate

the technique on 75 publicly available datasets collected from online sources.9 Over 153 tasks,

FlashProfile achieves a median profiling time of 0.7s, 77% of which fall under 2s. I show

a thorough analysis of the optimizations, and a comparison with state-of-the-art tools.

Applications in PBE Systems The benefits of syntactic profiles extend beyond data

understanding. An emerging technology, programming by examples (PBE) [Lie01, GPS17],

provides end users with powerful semi-automated alternatives to manual data wrangling.

For instance, they may use a tool like Flash Fill [Gul11], a popular PBE system for

data transformations within Microsoft Excel and Azure ML Workbench [Cor17c, Cor17b].

However, a key challenge to the success of PBE is finding a representative set of examples

that best discriminates the desired program from a large space of possible programs [MSG15].

9 Datasets are available at: https://github.com/SaswatPadhi/FlashProfileDemo/tree/master/tests.

48

https://github.com/SaswatPadhi/FlashProfileDemo/tree/master/tests

Typically users provide the desired outputs over the first few entries, and Flash Fill then

synthesizes the simplest generalization over them. However, this often results in incorrect

programs, if the first few entries are not representative of the various formats present in the

entire dataset [MSG15].

Instead, a syntactic profile can be used to select a representative set of examples from

syntactically dissimilar clusters. I tested 163 scenarios where Flash Fill requires more than

one input-output example to learn the desired transformation. In 80% of them, the examples

belong to different syntactic clusters identified by FlashProfile. Moreover, I show that a

profile-guided interaction model for Flash Fill, which I detail in § 3.5, is able to complete

86% of these tasks requiring the minimum number of examples. Instead of the user having

to select a representative set of examples, the dissimilarity measure allows for proactively

requesting the user to provide the desired output on an entry that is most discrepant with

respect to those previously provided.

In summary, I make the following major contributions:

(§ 3.1) I formally define syntactic profiling as a problem of clustering of strings, followed by

learning a succinct pattern for each cluster.

(§ 3.2) I show a hierarchical clustering technique that uses pattern learning to measure

dissimilarity of strings, and give performance optimizations that further exploit the

learned patterns.

(§ 3.3) I present a novel DSL for patterns, and give an efficient synthesis procedure with a

cost function for selecting desirable patterns.

(§ 3.4) I evaluate FlashProfile’s performance and accuracy on large real-life datasets, and

provide a detailed comparison with state-of-the-art tools.

(§ 3.5) I present a profile-guided interaction model for Flash Fill, and show that data

profiles may aid PBE systems by identifying a representative set of inputs.

49

3.1 Overview

I use dataset to denote a set of strings. Formally, a syntactic profile is defined as below:

Definition 3.1 (Syntactic Profile). Given a dataset S and a desired number k of patterns,

syntactic profiling involves learning (a) a partitioning S1 t . . . t Sk = S, and (b) a set of

patterns {P1, . . . , Pk}, where each Pi is an expression that describes the strings in Si. I call

the disjunction of these patterns P̃ = P1 ∨ . . . ∨ Pk a syntactic profile of S, which describes

all the strings in S.

The goal of syntactic profiling is to learn a set of patterns that summarize a given dataset,

but is neither too specific nor too general (to be practically useful). For example, the dataset

itself is a trivial overly specific profile, whereas the regex “.*” is an overly general one. I

propose a technique that leverages the following two key subcomponents to generate and

rank profiles:10

• a pattern learner L : 2 S → 2 L , which generates a set of patterns over an arbitrary pattern

language L , that are consistent with a given dataset.

• a cost function C : L × 2 S → R≥ 0, which quantifies the suitability of an arbitrary pattern

(in the same language L) with respect to the given dataset.

Using L and C, I can quantify the suitability of clustering a set of strings together. More

specifically, I can define a minimization objective O : 2 S → R≥ 0 that indicates an aggregate

cost of a cluster. I can now define an optimal syntactic profile that minimizes O over a given

dataset S:

Definition 3.2 (Optimal Syntactic Profile). Given a dataset S, a desired number k of

patterns, and access to a pattern learner L, a cost function C for patterns, and a minimization

objective O for partitions, I define: (a) the optimal partitioning S̃opt as one that minimizes

10 I denote the set of strings as S, the set of non-negative reals as R≥ 0, and the power set of a set X as 2X .

50

the objective function O over all partitions, and (b) the optimal syntactic profile P̃opt as the

disjunction of the least-cost patterns describing each partition in S̃opt. Formally,

S̃opt
def
= argmin

{S1, ... ,Sk}

s.t. S =
k⊔

i=1
Si

k∑
i=1

O(Si) and P̃opt
def
=

∨
Si ∈ S̃opt

argmin
P ∈L(Si)

C(P,Si)

Ideally, I would define the aggregate cost of a partition as the minimum cost incurred

by a pattern that describes it entirely. This is captured by O(Si)
def
= minP ∈L(Si) C(P,Si).

However, with this objective, computing the optimal partitioning S̃opt is intractable in

general. For an arbitrary learner L and cost function C, this would require exploring all

k-partitionings of the dataset S.11 Instead, I use an objective that is tractable and works

well in practice — the aggregate cost of a cluster is given by the maximum cost of describing

any two strings belonging to the cluster, using the best possible pattern. Formally, this

objective is Ô(Si)
def
= maxx,y ∈Si minP ∈L({x,y}) C(P, {x, y}). This objective is inspired by the

complete-linkage criterion [SSS48], which is widely used in clustering applications across

various domains [JMF99]. To minimize Ô, it suffices to only compute the costs of describing

(at most) |S|2 pairs of strings in S.

func Profile〈L,C〉(S : String[],m : Int,M : Int, θ : Real)
output: P̃ , a partitioning of S with the associated

patterns for each partition, s.t. m ≤ | P̃ | ≤M

1: P̃ ← {}
2: H ← BuildHierarchy〈L,C〉(S,M, θ)

3: for all X ∈ Partition(H,m,M) do
4: 〈Pattern: P,Cost: c〉 ← LearnBestPattern〈L,C〉(X)

5: P̃ ← P̃ ∪ {〈Data: X,Pattern: P 〉}

6: return P̃

Figure 3.3: The main profiling algorithm

I outline the main algorithm Pro-

file in Figure 3.3. It is parameterized

by an arbitrary learner L and cost func-

tion C. Profile accepts a dataset S,

the bounds
[
m,M

]
for the desired num-

ber of patterns, and a sampling factor

θ that decides the efficiency vs. accu-

racy trade-off. It returns the generated

11 The number of ways to partition a set S into k non-empty subsets is given by Stirling numbers of the

second kind [GKP94],
 k

|S|
. When k � |S|, the asymptotic value of

 k

|S|
 is given by

k|S|

k!
.

51

partitions paired with the least-cost patterns describing them: {〈S1, P1〉, . . . , 〈Sk, Pk〉}, where

m ≤ k ≤M .

At a high level, first the dataset is partitioned using a syntactic dissimilarity measure

induced by the cost of patterns. For large enough θ, all O(|S|2) pairwise dissimilarities

are computed to generate the partitioning S̃opt that minimizes Ô. However, many large

real-life datasets have a very small number of syntactic clusters, and S̃opt can be very closely

approximated by sampling only a few pairwise dissimilarities. In line 1, BuildHierarchyis

invoked to construct a hierarchy H over S with accuracy controlled by θ. The hierarchy H is

then cut at a certain height to obtain k clusters by calling Partition in line 2 — if m 6= M ,

k is heuristically decided based on the quality of clusters obtained at various heights. Finally,

using LearnBestPattern, a pattern P is learned for each cluster X, and is added to the

profile P̃ .

In the following subsections, I explain the two main components: (a) BuildHierarchy

for building a hierarchical clustering, and (b) LearnBestPattern for pattern learning.

3.1.1 Pattern-Specific Clustering
Lower Bin
[a−z] [01]

Upper Digit
[A−Z] [0−9]

〈TitleCaseWord〉 Hex
Upper � Lower+ [a−fA−F0−9]

Alpha AlphaDigit
[a−zA−Z] [a−zA−Z0−9]

␣ AlphaDigitSpace
\s [a−zA−Z0−9\s]

DotDash Punct
[.−] [., : ? /−]

AlphaDash Symb
[a−zA−Z−] [−., : ? /@#$%& ···]

AlphaSpace Base64
[a−zA−Z\s] [a−zA−Z0−9+\=]

Figure 3.4: Default atoms in Flash-

Profile, with the corresponding regex.

BuildHierarchy uses an agglomerative hierarchical

clustering (AHC) [XW05, Section IIB] to construct a

hierarchy (also called a dendrogram) that depicts a

nested grouping of the given collection of strings, based

on their syntactic similarity. Figure 3.5 shows such a

hierarchy over an incomplete and inconsistent dataset

containing years, using the default set of atoms listed

in Figure 3.4. Once constructed, a hierarchy may be

split at a suitable height to extract clusters of desired

granularity, which enables a natural form of refinement

— supplying a desired number of clusters. In contrast,

52

Year

1900

1877

ε

1860

?

1866

ε

1893
...

1888?

1872

(a) Dataset 12

⊥⊥⊥

Any+

“1” � Any+

“1” � Digit×3

“18” � Digit×2

1813 · · · 1898

“190” � Digit

1900 · · · 1903

“18” � Digit×2 � “?”

1850? · · · 1875?

“?”

?

Empty

ε

. .
. ...
.

. ...
.

. ...
. . .

Suggested

Refined

(b) A hierarchy based on default atoms from Figure 3.4

Figure 3.5: A hierarchy with suggested and refined clusters: Leaf nodes represent strings, and internal

nodes are labelled with patterns describing the strings below them. Atoms are concatenated using “ � ”.

A dashed edge denotes the absence of a pattern that describes the strings together.

flat clustering methods like k-means [Mac67] generate a fixed partitioning within the same

time complexity. In Figure 3.5(b), I show a heuristically suggested split with 4 clusters,

and a refined split on a request for 5 clusters. A key challenge to clustering is defining an

appropriate pattern-specific measure of dissimilarity over strings, as I show below.

Example 3.1. Consider the pairs: p = { “1817”, “1813?” } and q = { “1817” , “1907” }. Select-

ing the pair that is syntactically more similar is ambiguous, even for humans. The answer

depends on the user’s application — it may make sense to either cluster homogeneous strings

(containing only digits) together, or to cluster strings with a longer common prefix together.

A natural way to resolve this ambiguity is to allow users to express their application-

specific preferences by providing custom atoms, and then to make the clustering algorithm

sensitive to the available atoms. Therefore I desire a dissimilarity measure that incorporates

12 Linda K. Jacobs, The Syrian Colony in New York City 1880-1900. http://bit.ly/LJacobs

53

http://bit.ly/LJacobs

the user-specified atoms, and yet remains efficiently computable, since typical clustering

algorithms compute dissimilarities between all pairs of strings [XW05].

Syntactic Dissimilarity The key insight is to leverage program synthesis techniques to

efficiently learn patterns describing a given set of strings, and induce a dissimilarity measure

using the learned patterns — overly general or complex patterns indicate a high degree of

syntactic dissimilarity.

In § 3.2.1, I formally define the dissimilarity measure η, as the minimum cost incurred

by any pattern for describing a given pair of strings, using a specified pattern learner L and

cost function C. I evaluate the η measure in § 3.4.1, and demonstrate that for estimating

syntactic similarity it is superior to classical character-based measures [GF13], and simple

machine-learned models such as random forests based on intuitive features.

Adaptive Sampling and Approximation While η captures a high-quality syntactic

dissimilarity, with it, each pairwise dissimilarity computation requires learning and scoring

of patterns, which may be expensive for large real datasets. To allow end users to quickly

generate approximately correct profiles for large datasets, I present a two-stage sampling

technique.

1. At the top-level, FlashProfile employs a Sample−Profile−Filter cycle: a small

subset of the data is sampled, profiled, and is used to filter out data that is described

by the profile.

2. While profiling each sample, the BuildHierarchyalgorithm approximates some

pairwise dissimilarities using previously seen patterns.

Wnd users are allowed to control the degree of approximations using two optional parameters.

The key insight that, unlike typical clustering scenarios, computing dissimilarity between

a pair of strings gives us more than just a measure — one also learns a pattern. This pattern

54

can be tested on other pairs to approximate their dissimilarity, which is typically faster

than learning new patterns. The technique is inspired by counter-example guided inductive

synthesis (CEGIS) [STB06]. CEGIS was extended to sub-sampling settings by Raychev

et al. [RBV16], but they synthesize a single program and require the outputs for all inputs.

In this work, the learned profile is a disjunction of several programs, the outputs for which

over a dataset, i.e. the partitions, are unknown a priori.

Example 3.2. The pattern “PMC” �Digit×7 learned for the pair { “PMC2536233”, “PMC4901429” },

also describes the string pair { “PMC4901429”, “PMC2395569” }, and may be used to accurately

estimate their dissimilarity without invoking learning again.

However this sampling needs to be performed carefully for accurate approximations.

Although the pattern “1” � Digit×3 learned for { “1901”, “1875” }, also describes { “1872”,

“1875” }, there exists another pattern “187” � Digit, which indicates a much lower syntactic

dissimilarity. I propose an adaptive algorithm for sampling patterns based on previously

observed patterns and strings in the dataset. The sampling and approximation algorithms

are detailed in § 3.2.2 and § 3.2.3 respectively.

3.1.2 Pattern Learning via Program Synthesis

func LearnBestPattern〈L,C〉(S : String[])
output: The least-cost pattern and its cost, for S

1: V ← L(S)

2: if V = {} then return 〈Pattern:⊥⊥⊥,Cost:∞〉

3: P ← argminP ∈V C(P,S)

4: return 〈Pattern:P,Cost: C(P,S)〉

Figure 3.6: Learning the best pattern for a dataset

An important aspect of the clustering-based

approach to profiling, described in Sec-

tion 3.1.1, is its generality. It is agnostic

to the specific language L in which pat-

terns are expressed, as long as appropriate

pattern learner L and cost function C are

provided for L .

55

LearnBestPattern, listed in Figure 3.6, first invokes L to learn a set V of patterns

each of which describes all strings in S. If pattern learning fails,13 in line 2, the special

pattern ⊥⊥⊥ is returned together with a very high cost ∞. Otherwise, the pattern that has the

minimum cost using C w.r.t. S is returned. LearnBestPattern is used during clustering

to compute pairwise dissimilarity and finally compute the least-cost patterns for clusters.

A natural approach to learning patterns is inductive program synthesis [GPS17], which

generalizes a given specification to desired programs over a domain-specific language (DSL).

I propose a rich DSL for patterns, and present an efficient inductive synthesizer for it.

Language for Patterns The DSL LFP is designed to support efficient synthesis using

existing technologies while still being able to express rich patterns for practical applications.

A pattern is an arbitrary sequence of atomic patterns (atoms), each containing low-level

logic for matching a sequence of characters. A pattern P ∈ LFP describes a string s, i.e.

P (s) = true, iff the atoms in P match contiguous non-empty substrings of s, ultimately

matching s in its entirety. FlashProfile uses a default set of atoms listed in Figure 3.4,

which may be augmented with new regular expressions, constant strings, or ad hoc functions.

I formally define the language LFP in Section 3.3.1.

Pattern Synthesis The inductive synthesis problem for pattern learning is: given a set

of strings S, learn a pattern P ∈ LFP such that ∀ s ∈ S. P (s) = true. The learner LFP

decomposes the synthesis problem for P over the strings in S into synthesis problems for

individual atoms in P over appropriate substrings. However, a naïve approach of tokenizing

each string to (exponentially many) sequences of atoms, and computing their intersection

is simply impractical. Instead, LFP computes the intersection incrementally at each atomic

match, using a novel decomposition technique.

13 Pattern learning may fail, for example, if the language L is too restrictive and no pattern can describe the

given strings.

56

LFP is implemented using PROSE [Cor17e, PG15], a state-of-the-art inductive synthesis

framework. PROSE requires DSL designers to define the logic for decomposing a synthesis

problem over an expression to those over its subexpressions, which it uses to automatically

generate an efficient synthesizer for their DSL. I detail the synthesis procedure in Section 3.3.2.

Cost of Patterns Once a set of patterns has been synthesized, a variety of strategies

may be used to identify the most desirable one. The cost function CFP is inspired by

regularization [Tik63] techniques that are heavily used in statistical learning to construct

generalizations that do not overfit to the data. CFP decides a trade-off between two opposing

factors: (a) specificity: prefer a pattern that is not general, and (b) simplicity: prefer a

compact pattern that is easy to interpret.

Example 3.3. The strings { “Male”, “Female” } are matched by the patterns Upper � Lower+,

and Upper � Hex � Lower+. Although the latter is more specific, it is overly complex. On the

other hand, the pattern Alpha+ is simpler and easier to interpret, but is overly general.

To this end, each atom in LFP has a fixed static cost similar to fixed regularization

hyperparameters used in machine learning [Bis06], and a dataset-driven dynamic weight. The

cost of a pattern is the weighted sum of the cost of its constituent atoms. In § 3.3.3, I detail

the cost function CFP, and provide some guidelines on assigning static costs for custom atoms.

3.2 Hierarchical Clustering

I now detail the clustering-based approach for generating syntactic profiles and show practical

optimizations for fast approximately-correct profiling. In § 3.2.1 – § 3.2.4, I explain these in

the context of a small chunk of data drawn from a large dataset. In § 3.2.5, I then discuss

how profile large datasets by chunking it and combining the profiles generated for the chunks.

Recall that the first step in Profile is to build a hierarchical clustering over the data.

The BuildHierarchy procedure, listed in Figure 3.7(a), constructs a hierarchy H over

57

func BuildHierarchy〈L,C〉(S : String[],M : Int, θ : Real)
output: A hierarchical clustering over S

1: D ← SampleDissimilarities〈L,C〉(S, dθMe)
2: A← ApproxDMatrix(S, D)

3: return AHC(S, A)

(a) Building an approximately-correct hierarchy14

func AHC(S : String[], A : String×String 7→ Real)
output: A hierarchy (as nested sets) over S
1: H ←

{
{ s } | s ∈ S

}
2: while |H | > 1 do
3: 〈X,Y 〉 ← argminX,Y ∈H η̂ (X,Y | A)

4: H ←
(
H \ {X,Y }

)
∪
{
{X,Y }

}
5: return H

(b) A standard algorithm for AHC

Figure 3.7: Algorithms for pattern-similarity-based hierarchical clustering of string datasets

a given dataset S, with parameters M and θ. M is the maximum number of clusters in a

desired profile. The pattern sampling factor θ decides the performance vs. accuracy trade-off

while constructing the hierarchy H.

Henceforth, I use pair to denote a pair of strings. In line 1 of BuildHierarchy, the

pairwise dissimilarities (the best patterns and their costs) are sampled for a small set (based

on the θ factor) of string pairs. Specifically, out of all O(|S|2) pairs within S, dissimilarities

for only O(θM |S|) pairs are adaptively sampled by calling SampleDissimilarities, and the

learned patterns are cached in D. I formally define the dissimilarity measure in § 3.2.1, and

describe SampleDissimilarities in §3.2.2. The cache D is then used by ApproxDMatrix,

in line 2, to complete the dissimilarity matrix A over S, using approximations wherever

necessary. I describe these approximations in § 3.2.3. Finally, a standard agglomerative

hierarchical clustering (AHC) [XW05, Section IIB] is used to construct a hierarchy over S

using the matrix A.

3.2.1 Syntactic Dissimilarity

I formally define the syntactic dissimilarity measure as follows:

14 dxe denotes the ceiling of x, i.e. dxe = min {m ∈ Z | m ≥ x}.

58

Definition 3.3 (Syntactic Dissimilarity). For a given pattern learner L and a cost function C

over an arbitrary language of patterns L , I define the syntactic dissimilarity between strings

x, y ∈ S as the minimum cost incurred by a pattern in L to describe them together, i.e.

η (x, y)
def
=


0 if x = y

∞ if x 6= y
∧
V = {}

min
P ∈V

C
(
P, {x, y}

)
otherwise

where V = L
(
{x, y}

)
⊆ L is the set of patterns that describe strings x and y, and∞ denotes

a high cost for a failure to describe x and y together using patterns learned by L.

The following example shows some candidate patterns and their costs encountered during

dissimilarity computation for various pairs. The actual numbers depend on the pattern

learner and cost function used, in this case FlashProfile’s LFP and CFP, which I describe

in § 3.3. However, this example highlights the desirable properties for a natural measure of

syntactic dissimilarity.

Example 3.4. For three pairs, I show the shortcomings of classical character-based similarity

measures. I compare the Levenshtein distance (LD) [Lev66] for these pairs against the

pattern-based dissimilarity η computed with the default atoms from Figure 3.4. On the right,

I also show the least-cost pattern, and two other randomly sampled patterns that describe

the pair.

First, I compare two dates both using the same syntactic format “YYYY-MM-DD”:

(a)
1990-11-23

2001-02-04
LD = 8 vs. η = 4.96

{
4.96 Digit×4 � “-” � Digit×2 � “-” � Digit×2

179.9 Hex+ � Symb � Hex+ � “-” � Hex+

46482 Digit+ � Punct � Any+

Syntactically, these dates are very similar — they use the same delimiter “-”, and have same

width for the numeric parts. The best pattern found by FlashProfile captures exactly

59

these features. However, Levenshtein distance for these dates is higher than the following

dates which uses a different delimiter and a different order for the numeric parts:

(b)
1990-11-23

29/05/1923
LD = 5 vs. η = 30.2

{
30.2 Digit+ � Punct � Digit×2 � Punct � Digit+

318.6 Digit+ � Symb � Digit+ � Symb � Digit+

55774 Digit+ � Punct � Any+

The Levenshtein distance is again lower for the following pair containing a date and an ISBN

code:

(c)
1990-11-23

899-2119-33-X
LD = 7 vs. η = 23595

{
23595 Digit+ � “-” � Digit+ � “-” � Any+

55415 Digit+ � Punct � Any+

92933 Any+

The same trend is also observed for Jaro-Winkler [Win99], and other measures based on edit

distance [GF13]. Whereas these measures look for exact matches on characters, pattern-based

measures have the key advantage of being able to generalize substrings to atoms.

3.2.2 Adaptive Sampling of Patterns

Although η accurately captures the syntactic dissimilarity of strings over an arbitrary lan-

guage of patterns, it requires pattern learning and scoring for every pairwise dissimilarity

computation, which is computationally expensive. While this may not be a concern for

non-realtime scenarios, such as profiling large datasets on cloud-based datastores, I provide a

tunable parameter to end users to be able to generate approximately correct profiles for large

datasets in real time.

Besides a numeric measure of dissimilarity, computing η over a pair also generates a pattern

that describes the pair. Since the patterns generalize substrings to atoms, often the patterns

learned for one pair also describe many other pairs. I aim to sample a subset of patterns that

are likely to be sufficient for constructing a hierarchy accurate until M levels, i.e. 1 ≤ k ≤M

clusters extracted from this hierarchy should be identical to k clusters extracted from a

hierarchy constructed without approximations. The SampleDissimilarities algorithm,

60

func SampleDissimilarities〈L,C〉(S : String[], M̂ : Int)

output: A dictionary mapping O(M̂ |S|) pairs of strings from S,

to the best pattern describing each pair and its cost

1: D ← {} ; a← a random string in S ; ρ← {a}

2: for i← 1 to M̂ do

3: for all b ∈ S do

4: D[a, b]← LearnBestPattern〈L,C〉({a, b})

� Pick the most dissimilar string w.r.t. strings already in ρ.

5: a← argmaxx ∈ S miny ∈ ρ D[y, x].Cost

6: ρ← ρ ∪ {a}

7: return D

Figure 3.8: Adaptively sampling a small set of patterns

shown in Figure 3.8, is inspired by the seeding technique of k-means++ [AS07]. Instead of

computing all pairwise dissimilarities for pairs in S ×S, I compute the dissimilarities for pairs

in ρ× S, where set ρ is a carefully selected small set of seed strings. The patterns learned

during this process are likely to be sufficient for accurately estimating the dissimilarities for

the remaining pairs.

SampleDissimilarities takes a dataset S and a factor M̂ , and it samples dissimilarities

for O(M̂ |S|) pairs. It iteratively selects a set ρ containing M̂ strings that are most dissimilar

to each other. Starting with a random string in ρ, in each iteration, at line 6, it adds the

string x ∈ S such that it is as dissimilar as possible, even with its most-similar neighbor in

ρ. In the end, the set D only contains dissimilarities for pairs in S × ρ, computed at line 5.

Recall that, M̂ is controlled by the pattern sampling factor θ. In line 1 of BuildHierarchy

(in Figure 3.7(a)), M̂ is set to dθMe.

Since the user may request up to at most M clusters, θ must be at least 1.0, so that at

least one seed string is picked from each cluster to ρ. Then, computing the dissimilarities with

61

all other strings in the dataset would ensure a good distribution of patterns that describe

intra– and inter– cluster dissimilarities, even for the finest granularity clustering with M

clusters.

Example 3.5. Consider the dataset containing years in Figure 3.5(a). Starting with a random

string, say “1901”; the set ρ of seed strings grows as shown below, with increasing M̂ . At each

step, NN (nearest neighbor) shows the new string added to ρ paired with its most similar

neighbor.

M̂ = 2 | NN = 〈ε, “1901”〉 ρ = {“1901”, ε}

M̂ = 3 | NN = 〈“?”, “1901”〉 ρ = {“?”, “1901”, ε}

M̂ = 4 | NN = 〈“1875?”, “1901”〉 ρ = {“1875?”, “?”, “1901”, ε}

M̂ = 5 | NN = 〈“1817”, “1875?”〉 ρ = {“1817”, “1875?”, “?”, “1901”, ε}

M̂ = 6 | NN = 〈“1898”, “1817”〉 ρ = {“1898”, “1817”, “1875?”, “?”, “1901”, ε}

3.2.3 Dissimilarity Approximation

Now I present the technique for completing a dissimilarity matrix over a dataset S, using the

patterns sampled from the previous step. Note that, for a large enough value of the pattern

sampling factor, i.e. θ ≥ |S|/M, our technique would sample all pairwise dissimilarities and

no approximation would be necessary. For smaller values of θ, the patterns learned while

computing η over ρ × S are used to approximate the remaining pairwise dissimilarities in

S × S. The key observation here is that, testing whether a pattern describes a string is

typically much faster than learning a new pattern.

The ApproxDMatrix procedure, listed in Figure 3.9, uses the dictionary D of patterns

from SampleDissimilarities to generate a matrix A of all pairwise dissimilarities over S.

Lines 7 and 8 show the key approximation steps for a pair {x, y}. In line 7, the patterns in

D are tested to select a subset V of them containing only those which describe both x and y.

Then their new costs relative to {x, y} is computed in line 8 to select the least pattern cost

62

func ApproxDMatrix〈L,C〉(S : String[], D : String× String 7→ Pattern× Real)
output: A matrix A of all pairwise dissimilarities over strings in S

1: A← {}
2: for all x ∈ S do
3: for all y ∈ S do
4: if x = y then A[x, y]← 0

5: else if 〈x, y〉 ∈ D then A[x, y]← D[x, y].Cost

6: else
� Select the least cost pattern that describes x and y.

7: V ←
{
P
∣∣ 〈Pattern:P,Cost: ·〉 ∈ D∧P (x)

∧
P (y)

}
8: if V 6= {} then A[x, y]← minP ∈ V C

(
P, {x, y}

)
9: else
� Compute η (s, y), and store the learned pattern.

10: D[x, y]← LearnBestPattern〈L,C〉({x, y})
11: A[x, y]← D[x, y].Cost

12: return A

Figure 3.9: Approximating a complete dissimilarity matrix

as an approximation of η (x, y). If V turns out to be empty, i.e. no sampled pattern describes

both x and y, then, in line 10, LearnBestPattern is called to compute η (x, y). The new

pattern is also added to D for use in future approximations.

Although θ = 1.0 ensures that at least one seed string is picked from each final cluster, in

practice a θ that is slightly greater than 1.0 works better. This results in sampling a few more

seed strings, and ensures a better distribution of patterns in D at the cost of a negligible

performance overhead. In practice, it rarely happens that no sampled pattern describes a

new pair (at line 9, Figure 3.9), since seed patterns for inter-cluster string pairs are usually

overly general, as I show in the example below.

Example 3.6. Consider a dataset S = {“07-jun”, “aug-18”, “20-feb”, “16-jun”, “20-jun”}.

Assuming M = 2 and θ = 1.0 (i.e. M̂ = 2), suppose I start with the string “20-jun”.

63

Then, following the SampleDissimilaritiesalgorithm shown in Figure 3.8, I would select

ρ = { “20-jun” , “aug-18” }, and would sample the following seed patterns into D based on

patterns defined over the default atoms (listed in Figure 3.4) and constant string literals:

(a) D[“20-jun”,“07-jun”] 7→ Digit×2 � “-jun”, and

(b) D[“20-jun”,“20-feb”] 7→ “20-” � Lower×3,

(c) D[“20-jun”,“16-jun”] 7→ Digit×2 � “-jun”, and

(d) D[“20-jun”,“aug-18”],D[“aug-18”,“07-jun”],D[“aug-18”,“20-feb”],D[“aug-18”,“16-jun”]

7→ AlphaDigit+ � “-” � AlphaDigit+.

Next, I estimate η (“16-jun” , “20-feb”) using these patterns. None of (a) — (c) describe

the pair, but (d) does. However, it is overly general compared to the least-cost pattern,

Digit×2 � “-” � Lower×3.

As in the case above, depending on the expressiveness of the pattern language, for a small

θ the sampled patterns may be too specific to be useful. With a slightly higher θ = 1.25,

i.e. M̂ = dθMe = 3, I would also select “07-jun” as a seed string in ρ, and sample the

desired while computing D[“07-jun”,“20-feb”]. I evaluate the impact of θ on performance

and accuracy in § 3.4.2.

3.2.4 Hierarchy Construction and Splitting

Once a dissimilarity matrix has been computed, a standard agglomerative hierarchical

clustering (AHC) [XW05, Section IIB] algorithm is used, as outlined in Figure 3.7(b). Note

that AHC is not parameterized by L and C, since it does not involve learning or scoring of

patterns any more.

Starting with each string in a singleton set (leaf nodes of the hierarchy), the least-dissimilar

pair of sets are iteratively merged, until only a single set (root of the hierarchy) remains.

AHC relies on a linkage criterion to estimate dissimilarity of sets of strings. I use the

64

classic complete-linkage (also known as further-neighbor linkage) criterion [SSS48], which has

been shown to be resistant to outliers, and yield useful hierarchies in practical applications

[JMF99].

Definition 3.4 (Complete-Linkage). For a set S and a dissimilarity matrix A defined on S,

given two arbitrarily-nested clusters X and Y over a subset of entities in S, the dissimilarity

between their contents (the flattened sets X,Y ⊆ S, respectively) is defined as:

η̂ (X, Y | A)
def
= max

x∈X,y∈Y
A[x, y]

Once a hierarchy has been constructed, the Profile algorithm (in Figure 3.3) invokes the

Partition method (at line 2) to extract k clusters within the provided bounds [m,M]. If

m 6= M , a heuristic based on the elbow (also called knee) method [HBV01] is used: between

the top mth and the M th nodes, The hierarchy is split till the knee — a node below which the

average intra-cluster dissimilarity does not vary significantly. A user may request m = k = M ,

in which case Partition simply splits the top k nodes of the hierarchy to generate k clusters.

3.2.5 Profiling Large Datasets

func BigProfile〈L,C〉(S : String[],m : Int,M : Int,
θ : Real, µ : Real)

output: A profile P̃ that satisfies m ≤ | P̃ | ≤M

1: P̃ ← {}
2: while | S | > 0 do
3: X ← SampleRandom(S, dµMe)
4: P̃ ′ ← Profile〈L,C〉(X,m,M, θ)

5: P̃ ← CompressProfile〈L,C〉(P̃ ∪ P̃ ′,M)

6: S ← RemoveMatchingStrings(S, P̃)

7: return P̃

Figure 3.10: Profiling large datasets

To scale the technique to large datasets, I now de-

scribe a second round of sampling. Recall that in

SampleDissimilarities, O(θM |S|) pairwise

dissimilarities are sampled. Although θM is very

small, | S | can still be quite large for real-life

datasets. In order to address this, the Pro-

file algorithm from Figure 3.3 is run on small

chunks of the dataset, and the generated profiles

are then combined.

65

func CompressProfile〈L,C〉(P̃ : ref Profile,M : Int)

output: A compressed profile P̃ that satisfies | P̃ | ≤M

1: while | P̃ | > M do

� Compute the most similar partitions in the profile so far.

2: 〈X,Y 〉 ← argmin
X,Y ∈P̃

[
LearnBestPattern〈L,C〉(X.Data ∪ Y.Data)

]
.Cost

� Merge partitions 〈X,Y 〉, and update P̃ .

3: Z ← X.Data ∪ Y.Data

4: P ← LearnBestPattern〈L,C〉(Z).Pattern

5: P̃ ← (P̃ \ {X,Y }) ∪ { 〈Data: Z,Pattern: P 〉 }

6: return P̃

Figure 3.11: Limiting the number of patterns in a profile

I outline the BigProfile algorithm in Figure 3.10. This algorithm accepts a new string

sampling factor µ ≥ 1, which controls the size of chunks profiled in each iteration. In § 3.4.3,

I evaluate the impact of µ on performance and accuracy.

First, a random subset X of size dµMe is selected from S in line 3. In line 4, a profile P̃ ′

of X is obtained, and is merged with the global profile P̃ in line 5. This loop is repeated

with the remaining strings in S that do not match the global profile. For brevity, I elide the

details of SampleRandom and RemoveMatchingStrings, which have straightforward

implementations. Note that, while merging P̃ and P̃ ′ in line 5, it is possible to exceed

the maximum number of patterns M . In Figure 3.11 I outline CompressProfilethat

compresses a given profile to a given size bound. It accepts a profile P̃ and shrinks it to

at most M patterns. The key idea is to repeatedly merge the most similar pair of patterns

in P̃ . However, the similarity between patterns cannot be computed directly. Instead, it is

estimated using syntactic similarity of the associated data partitions. In line 2, the partitions

〈X, Y 〉 which are the most similar, i.e. require the least cost pattern for describing them

together, are identified. Then X and Y are merged to Z, a pattern describing Z is learned,

66

and P̃ is updated by replacing X and Y with Z and its pattern. This process is repeated

until the total number of patterns falls to M .

Theorem 3.1 (Termination). Over an arbitrary language L of patterns, assume an arbitrary

learner L : 2 S → 2 L and a cost function C : L × 2 S → R≥ 0, such that for any finite dataset

S ⊂ S, I have: (a) L(S) terminates and produces a finite set of patterns, and (b) C(P,S)

terminates for all P ∈ L . Then, the BigProfile procedure (Figure 3.10) terminates on any

finite dataset S ⊂ S, for arbitrary valid values of the optional parameters m, M , θ and µ.

Proof. Note that in BigProfile, the loop within lines 2 – 6 runs for at most |S|/dµMe

iterations, since at least dµMe strings are removed from S in each iteration. Therefore it is

sufficient to show that Profile and CompressProfile terminate.

First, note that termination of LearnBestPattern immediately follows from (a) and

(b). Then, it is easy to observe that CompressProfile terminates as well: (a) the loop in

lines 1 – 5 runs for at most |P̃ | −M iterations, and (b) LearnBestPattern is invoked

O(|P̃ |2) times in each iteration.

The Profile procedure (Figure 3.3) makes at most O((µM)2) calls to LearnBestPat-

tern (Figure 3.6) to profile the dµMe strings sampled in to X — at most O
(
(µM)2

)
calls

within BuildHierarchy (Figure 3.7(a)), and O(M) calls to learn patterns for the final

partitions. Depending on θ, BuildHierarchy may make many fewer calls to LearnBest-

Pattern. However, it makes no more than 1 such call per pair of strings in X, to build the

dissimilarity matrix. Therefore, Profile terminates as well.

3.3 Pattern Synthesis

I now describe the specific pattern language, leaning technique and cost function used to

instantiate the profiling technique as FlashProfile. I begin with a brief description the

67

pattern language in Section 3.3.1, present the pattern synthesizer in Section 3.3.2, and

conclude with the cost function in Section 3.3.3.

3.3.1 The Pattern Language LFP

Figure 3.12(a) shows the formal syntax for the pattern language LFP. Each pattern P ∈ LFP

is a predicate defined on strings, i.e. a function P : String → Bool, which embodies a set

of constraints over strings. A pattern P describes a given string s, i.e. P (s) = true, iff s

satisfies all constraints imposed by P . Patterns in LFP are composed of atomic patterns:

Definition 3.5 (Atomic Pattern (or Atom)). An atom, α : String→ Int is a function, which

given a string s, returns the length of the longest prefix of s that satisfies its constraints.

Atoms only match non-empty prefixes. α(s) = 0 indicates match failure of α on s.

The following four kinds of atoms are allowed in LFP:

(a) Constant Strings : A Consts atom matches only the string s as the prefix of a given string.

For brevity, I denote Const“str” as simply “str” throughout the text.

(b) Regular Expressions : A RegExr atom returns the length of the longest prefix of a given

string, that is matched by the regex r.

(c) Character Classes: A Class0c atom returns the length of the longest prefix of a given

string, which contains characters only from the set c. A Classzc atom with z > 0 further

enforces a fixed-width constraint — the match Classzc(s) fails if Class0c(s) 6= z, otherwise

it returns z.

(d) Arbitrary Functions : A Functf atom uses the function f that may contain arbitrary logic,

to match a prefix p of a given string and returns |p|.

15 a ◦ b denotes the concatenation of strings a and b, and r . x denotes that the regex r matches the string x

in its entirety.

68

Pattern P [s] := Empty(s)

| P [SuffixAfter(s, α)]

Atom α := Classzc | RegExr
| Functf | Consts

c ∈ power set of characters
f ∈ functions String→ Int
r ∈ regular expressions
s ∈ set of strings S
z ∈ non-negative integers

(a) Syntax of LFP patterns.

Empty(ε) ⇓ true

s = s0 ◦ s1 α(s) = |s0| > 0

SuffixAfter(s, α) ⇓ s1

Functf (s) ⇓ f(s)

|s| > 0 s0 = s ◦ s1
Consts(s0) ⇓ |s|

L = {n ∈ N | r . s[0 ::: n]}
RegExr(s) ⇓ maxL

s = s0 ◦ s1 ∀x ∈ s0 : x ∈ c
s1 = ε ∨ s1[0] 6∈ c
Class0c(s) ⇓ |s0|

s = s0 ◦ s1 ∀x ∈ s0 : x ∈ c
|s0| = z > 0 s1 = ε ∨ s1[0] 6∈ c

Classzc(s) ⇓ z

(b) Big-step semantics for LFP patterns: We use the judgement E ⇓ v

to indicate that the expression E evaluates to a value v.

Figure 3.12: Formal syntax and semantics of our DSL LFP for defining syntactic patterns over strings15

Note that, although both constant strings and character classes may be expressed as

regular expressions, having separate terms for them has two key benefits:

• As shown in the next subsection, all constant strings are automatically inferred, and some

character class atoms (namely, those having a fixed-width). This is unlike regular expression

or function atoms, which are not inferred and must be provided a priori.

• These atoms may leverage more efficient matching logic and do not require regular expression

matching in its full generality. Constant string atoms use equality checks for characters,

and character class atoms use set membership checks.

I list the default set of atoms provided with FlashProfile, in Figure 3.4. Users may extend

this set with new atoms from any of the aforementioned kinds.

Example 3.7. The atom Digit is Class1D with D = {0, . . . , 9}. I write Class0D as Digit+, and

ClassnD as Digit×n for clarity. Note that, Digit×2 matches “04/23” but not “2017/04”, although

Digit+ matches both, since the longest prefix matched, “2017”, has length 4 6= 2.

Definition 3.6 (Pattern). A pattern is simply a sequence of atoms. The pattern Empty

denotes an empty sequence, which only matches the empty string ε. I use the concatenation

69

operator “ � ” for sequencing atoms. For k > 1, the sequence α1 � α2 � . . . � αk of atoms

defines a pattern that is realized by the LFP expression:

Empty(SuffixAfter(· · · SuffixAfter(s, α1) · · · , αk)),

which matches a string s, iff

s 6= ε
∧
∀i ∈ {1, ..., k} : αi(si) > 0

∧
sk+1 = ε,

where s1
def
= s and si+1

def
= si[αi(si) :::] is the remaining suffix of the string si after matching

atom αi.

Throughout this section, I use s[i] to denote the ith character of s, and s[i ::: j] denotes the

substring of s from the ith character, until the jth. I omit j to indicate a substring extending

until the end of s. In LFP, the SuffixAfter(s, α) operator computes s[α(s) :::], or fails with

an error if α(s) = 0. I also show the formal semantics of patterns and atoms in LFP, in

Figure 3.12(b).

Note that, atoms are forbidden from matching empty substrings. This reduces the search

space by an exponential factor, since an empty string may trivially be inserted between any

two characters within a string. However, this does not affect the expressiveness of the final

profiling technique, since a profile uses a disjunction of patterns. For instance, the strings

matching a pattern α1 � (ε | α2) � α3 can be clustered into those matching α1 � α3 and

α1 � α2 � α3.

3.3.2 Synthesis of LFP Patterns

The pattern learner LFP uses inductive program synthesis [GPS17] for synthesizing patterns

that describe a given dataset S using a specified set of atoms 0. For the convenience of end

users, I automatically enrich their specified atoms by including: (a) all possible Const atoms,

70

and (b) all possible fixed-width variants of all Class atoms specified by them. The learner

LFP is instantiated with these enriched atoms derived from 0, denoted as 0̂:

0̂ def
= 0 ∪ {Consts | s ∈ S}

∪ {Classzc | Class0c ∈ 0
∧

z ∈ N}
(3.1)

Although 0̂ is very large, as I describe below, the learner LFP efficiently explores this search

space, and also provides a completeness guarantee on patterns possible over 0̂.

I build on top of PROSE [Cor17e], a state-of-the-art inductive program synthesis library,

which implements the FlashMeta [PG15] framework. PROSEuses deductive reasoning

— reducing a problem of synthesizing an expression to smaller synthesis problems for its

subexpressions, and provides a robust framework with efficient algorithms and data-structures

for this. The key contribution towards LFP are efficient witness functions [PG15, §5.2] that

enable PROSE to carry out the deductive reasoning over LFP.

An inductive program synthesis task is defined by: (a) a domain-specific language (DSL)

for the target programs, which in the case is LFP, and (b) a specification [PG15, §3.2] (spec)

that defines a set of constraints over the output of the desired program. For learning patterns

over a collection S of strings, I define a spec ϕ, that simply requires a learned pattern P to

describe all given strings, i.e. ∀s ∈ S : P (s) = true. I formally write this as:

ϕ
def
=
∧
s∈S

[s true]

I provide a brief overview of the deductive synthesis process here, and refer the reader to

FlashMeta [PG15] for a detailed discussion. In a deductive synthesis framework, we are

required to define the logic for reducing a spec for an expression to specs for its subexpressions.

The reduction logic for specs, called witness functions [PG15, §5.2], is domain-specific, and

depends on the semantics of the DSL. Witness functions are used to recursively reduce the

specs to terminal symbols in the DSL. PROSE uses a succinct data structure [PG15, §4]

71

to track the valid solutions to these specs at each reduction and generate expressions that

satisfy the initial spec. For LFP, I describe the logic for reducing the spec ϕ over the two

kinds of patterns: Empty and P [SuffixAfter(s, α)]. For brevity, I elide the pseudocode for

implementing the witness functions — their implementation is straightforward, based on the

reductions I describe below.

For Empty(s) to satisfy a spec ϕ, i.e. describe all strings s ∈ S, each string s must indeed

be ε. No further reduction is possible since s is a terminal. Only ∀s ∈ S : s = ε is checked,

and Empty(s) is rejected if S contains at least one non-empty string.

The second kind of patterns for non-empty strings, P [SuffixAfter(s, α)], allows for

complex patterns that are a composition of an atom α and a pattern P . The pattern

P [SuffixAfter(s, α)] contains two unknowns: (a) an atom α that matches a non-empty

prefix of s, and (b) a pattern P that matches the remaining suffix s[α(s) :::]. Again, note

that this pattern must match all strings s ∈ S. Naïvely considering all possible combinations

of α and P leads to an exponential blow up.

First note that for a fixed α the candidates for P can be generated recursively by posing

a synthesis problem similar to the original one, but over the suffix s[α(s) :::] instead of each

string s. This reduction style is called a conditional witness function [PG15, §5.2], and

generates the following spec for P assuming a fixed α:

ϕα
def
=
∧
s∈S

[
s[α(s) :::] true

]
(3.2)

However, naïvely creating ϕα for all possible values of α is infeasible, since the set 0̂ of

atoms is unbounded. Instead, I consider only those atoms (called compatible atoms) that

match some non-empty prefix for all strings in S, since ultimately the pattern needs to

describe all strings. Prior pattern-learning approaches [RH01, Sin16] learn complete patterns

for each individual string, and then compute their intersection to obtain patterns consistent

with the entire dataset. In contrast, this approach computes the set of atoms that are

72

compatible with the entire dataset at each step, which allows us to generate this intersection

in an incremental manner.

Definition 3.7 (Compatible Atoms). Given a universe 0 of atoms, I say a subset A ⊆ 0 is

compatible with a dataset S, denoted as A ∝ S, if all atoms in A match each string in S, i.e.

A ∝ S iff ∀α ∈ A : ∀ s ∈ S : α(s) > 0

I say that a compatible set A of atoms is maximal under the given universe 0, denoted as

A = max0
∝[S] iff ∀X ⊆ 0 : X ∝ S ⇒ X ⊆ A.

Example 3.8. Consider a dataset with Canadian postal codes: S = {“V6E3V6”, “V6C2S6”,

“V6V1X5”, “V6X3S4”}. With 0 = the default atoms (listed in Figure 3.4), I obtain the enriched

set 0̂ using Equation (3.1). Then, the maximal set of atoms compatible with S under 0̂, i.e.

max0̂
∝[S] contains 18 atoms, such as “V6”, “V”, Upper, Upper+, AlphaSpace, AlphaDigit×6 etc.

For a given universe 0 of atoms and a dataset S, the GetMaxCompatibleAtoms

method outlined in Figure 3.13 is invoked to efficiently compute the set Λ = max0̂
∝[S], where

0̂ denotes the enriched set of atoms based on 0 given by Equation (3.1). Starting with Λ = 0,

in line 1, atoms that are not compatible with S, i.e. fail to match at least one string s ∈ S, are

iteratively removed from Λ at line 4. At the same time, a hashtable C is maintained, which

maps each Class atom to its width at line 6. C is used to enrich 0 with fixed-width versions of

Class atoms that are already specified in 0. If the width of a Class atom is not constant over

all strings in S, it is removed from the hashtable C, at line 7. For each remaining Class atom

α in C, a fixed-width variant is added for α to Λ. In line 8, RestrictWidth is invoked to

generate the fixed-width variant for α with width C[α]. Finally, Λ is also enriched with Const

atoms — the longest common prefix L is computed across all strings, then every prefix of L is

added to Λ, at line 12. Note that, GetMaxCompatibleAtoms does not explicitly compute

the entire set 0̂ of enriched atoms, but performs simultaneous pruning and enrichment on 0

to ultimately compute their maximal compatible subset, Λ = max0̂
∝[S].

73

func GetMaxCompatibleAtoms(S : String[],0 : Atom[])
output: The maximal set of atoms that are compatible with S

1: C ← {} ; Λ← 0

2: for all s ∈ S do
3: for all α ∈ Λ do
� Remove incompatible atoms.

4: if α(s) = 0 then Λ.Remove(α) ; C.Remove(α)

5: else if α ∈ Class then
� Check if character class atoms maintain a fixed width.

6: if α 6∈ C then C[α]← α(s)

7: else if C[α] 6= α(s) then C.Remove(α)

� Add compatible fixed-width Class atoms.

8: for all α ∈ C do Λ.Add(RestrictWidth(α,C[α]))

� Add compatible Const atoms.

9: L← LongestCommonPrefix(S)

10: Λ.Add(ConstL[0 : 1], ConstL[0 : 2], . . . , ConstL)

11: return Λ

Figure 3.13: Computing the maximal set of compatible atoms

In essence, the problem of learning an expression P [SuffixAfter(s, α)] with spec ϕ is

reduced to
∣∣max0̂

∝[S]
∣∣ subproblems for P with specs {ϕα | α ∈ max0̂

∝[S]}, where ϕα is as given

by Equation (3.2), and 0̂ denotes the enriched set of atoms derived from 0 by Equation (3.1).

Note that these subproblems are recursively reduced further, until all characters in each

string are matched, and then synthesis terminates with Empty. Given this reduction logic

as witness functions, PROSE performs these recursive synthesis calls efficiently, and finally

combines the atoms to candidate patterns. I conclude this subsection with a comment on the

soundness and completeness of LFP.

Definition 3.8 (Soundness and 0-Completeness). A learner for LFP patterns is said to be

sound if, for any dataset S, every learned pattern P satisfies ∀s ∈ S : P (s) = true.

74

A learner for LFP, instantiated with a universe 0 of atoms is said to be 0-complete

if, for any dataset S, it learns every possible pattern P ∈ LFP over 0 atoms that satisfy

∀s ∈ S : P (s) = true.

Theorem 3.2 (Soundness and 0̂-Completeness of LFP). For an arbitrary set 0 of user-specified

atoms, FlashProfile’s pattern learner LFP is sound and 0̂-complete, where 0̂ denotes the

enriched set of atoms obtained by augmenting 0 with constant-string and fixed-width atoms,

as per Equation (3.1).

Proof. Soundness is guaranteed since only compatible atoms are composed. 0̂-completeness

follows from the fact that always the maximal compatible subset of 0̂ is considered.

Due to the 0̂-completeness of LFP, once the set LFP(S) of patterns over S has been

computed, a variety of cost functions may be used to select the most suitable pattern for S

amongst all possible patterns over 0̂, without having to invoke pattern learning again.

3.3.3 Cost of Patterns in LFP

The cost function CFP assigns a real-valued score to each pattern P ∈ LFP over a given dataset

S, based on the structure of P and its behavior over S. This cost function is used to select the

most desirable pattern that represents the dataset S. Empty is assigned a cost of 0 regardless

of the dataset, since Empty can be the only pattern consistent with such datasets. For a

pattern P = α1 � . . . � αk, I define the cost CFP(P,S) with respect to a given dataset S as:

CFP(P,S) =
k∑
i=1

Q(αi) ·W (i,S | P)

CFP balances the trade-off between a pattern’s specificity and complexity. Each atom α in

LFP has a statically assigned cost Q(α) ∈ (0,∞], based on a priori bias for the atom. The

75

cost function CFP computes a sum over these static costs after applying a data-driven weight

W (i,S | P) ∈ (0, 1):

W (i,S | α1 � . . . � αk) =
1

|S|
·
∑
s∈S

αi(si)

|s|
,

where s1
def
= s and si+1

def
= si[αi(si) :::] denotes the remaining suffix of si after matching with αi,

as in Definition 3.6. This dynamic weight is an average over the fraction of length matched by

αi across S. It gives a quantitative measure of how well an atom αi generalizes over the strings

in S. With a sound pattern learner, an atomic match would never fail and W (i,S | P) > 0

for all atoms αi.

Example 3.9. Consider S = { “Male” , “Female” }, that are matched by P1 = Upper � Lower+,

and P2 = Upper � Hex � Lower+. Given FlashProfile’s static costs: {Upper 7→ 8.2, Hex 7→

26.3, Lower+ 7→ 9.1}, the costs for these two patterns shown above are:

CFP(P1,S) = 8.2×
1/4 + 1/6

2
+ 9.1×

3/4 + 5/6

2
= 8.9

CFP(P2,S) = 8.2×
1/4 + 1/6

2
+ 26.3×

1/4 + 1/6

2
+ 9.1 ·

2/4 + 4/6

2
= 12.5

P1 is chosen as best pattern, since CFP(P1,S) < CFP(P2,S).

Note that although Hexis a more specific character class compared to Upperand Lower, I

assign it a higher static cost to avoid strings like “face” being described as Hex×4 instead of

Lower×4. Hex×4 would be chosen over Lower×4 only if some other strings, such as “f00d”, are

found in the dataset, which cannot be described using Lower×4.

Static Cost (Q) for Atoms The learner LFP automatically assigns the static cost of a

Consts atom to be proportional to 1/|s|, and the cost of a Classzc atom, with width z ≥ 1, to

be proportional to Q(Class0c)/z. However, static costs for other kinds of atoms must be provided

by the user.

76

Static costs for the default atoms, listed in Figure 3.4, were seeded with the values based

on their estimated size — the number of strings the atom may match. Then they were

penalized (e.g. the Hexatom) with empirically decided penalties to prefer patterns that are

more natural to users. I describe the quality measure for profiles in § 3.4.2, which I have used

to decide the penalties for the default atoms. In future, I plan to automate the process of

penalizing atoms by designing a learning procedure which tries various perturbations to the

seed costs to optimize profiling quality.

3.4 Evaluation

I now present experimental evaluation of the FlashProfile tool which implements the

technique, focusing on the following key questions:

(§ 3.4.1) How well does the syntactic similarity measure capture similarity of real-life entities?

(§ 3.4.2) How accurate are the profiles? How do sampling and approximations affect them?

(§ 3.4.3) How fast is FlashProfile, with and without approximations, on real-life datasets?

(§ 3.4.4) Are the profiles natural and useful? How do they compare against existing tools?

Implementation I have implemented FlashProfile as a cross-platform C# library built

using Microsoft PROSE [Cor17e]. It is now publicly available as part of the PROSE NuGet

package.16 All of the experiments were performed with PROSE 2.2.0 and .NET Core 2.0.0,

on an Intel i7 3.60GHz CPU with 32GB RAM running 64-bit Ubuntu 17.10.

16 FlashProfile has been publicly released as the Matching.Text module within the PROSE SDK. For more

information, please see: https://microsoft.github.io/prose/documentation/matching-text/intro/.

77

https://microsoft.github.io/prose/documentation/matching-text/intro/

Figure 3.14: Number and length of strings across datasets17

Test Datasets I have collected 75 datasets from public sources,17 spanning various domains

such as names, postal codes, phone numbers, etc. Their sizes and the distribution of string

lengths is shown in Figure 3.14. I sort them into three (overlapping) groups:

• Clean (25 datasets): Each of these datasets, uses a single format that is distinct from

other datasets. I test syntactic similarity over them — strings from the same dataset must

be labeled as similar.

• Domains (63 datasets): These datasets belong to mutually-distinct domains but may

exhibit multiple formats. I test the quality of profiles over them — a profile learned over

fraction of a dataset should match rest of it, but should not be too general as to also match

other domains.

• All (75 datasets): I test FlashProfile’s performance across all datasets.

17 Datasets are available at: https://github.com/SaswatPadhi/FlashProfileDemo/tree/master/tests.

78

https://github.com/SaswatPadhi/FlashProfileDemo/tree/master/tests

3.4.1 Syntactic Similarity

I evaluate the applicability of the dissimilarity measure from Definition 3.3, over real-life

entities. From the Clean group, I randomly pick two datasets and select a random string from

each. A good similarity measure should recognize when the pair is drawn from the same dataset

by assigning them a lower dissimilarity value, compared to a pair from different datasets. For

example, the pair { “A. Einstein”, “I. Newton” } should have a lower dissimilarity value

than { “A. Einstein”, “03/20/1998” }. I instantiated FlashProfile with only the default

atoms listed in Figure 3.4 and tested 240400 such pairs. Figure 3.15 shows a comparison of

the method against two simple baselines: (a) a character-wise edit-distance-based similarity

measure (JarW), and (b) a machine-learned predictor (RF) over intuitive syntactic features.

For evaluation, I use the standard precision-recall (PR) [MRS08] measure. In the context,

precision is the fraction of pairs that truly belongs to the same dataset, out of all pairs that

are labeled to be “similar” by the predictor. Recall is the fraction of pairs retrieved by the

predictor, out of all pairs truly drawn from same datasets. By varying the threshold for

labelling a pair as “similar”, I generate a PR curve and measure the area under the curve

(AUC). A good similarity measure should exhibit high precision and high recall, and therefore

have a high AUC.

First, observe that character-based measures [GF13] show poor AUC, and are not indicative

of syntactic similarity. For instance, Levenshtein distance [Lev66], used within Google

OpenRefine [Inc10], exhibits a negligible AUC over the benchmarks. Although the Jaro-

Winkler distance [Win99], indicated as JarW in Figure 3.15(a), shows a better AUC, it is

quite low compared to both the and machine-learned predictors.

The second baseline is a standard random forest [Bre01] model RF using the syntactic

features listed in Figure 3.15(b), such as difference in length, number of digits, etc. I train RF 1

18 len returns string length, begin〈X〉 checks if both strings begin with a character in X, cnt〈X〉 counts

occurrences of characters from X in a string, and ∆[f] computes |f(s1)− f(s2)|2 for a pair of strings s1

and s2.

79

(a) Precision-Recall curves

∆[len]

∆[cnt〈Digit〉]
∆[cnt〈Lower〉]
∆[cnt〈Upper〉]

∆[cnt〈 ␣ 〉]
∆[cnt〈“.”〉]
∆[cnt〈“,”〉]
∆[cnt〈“-”〉]
begin〈Upper〉
begin〈Lower〉
begin〈Digit〉

(b) Features18

Predictor FP JarW RF1 RF2 RF3

AUC 96.28% 35.52% 91.73% 98.71% 76.82%

Figure 3.15: Similarity prediction accuracy of FlashProfile (FP) vs. a character-based measure

(JarW), and random forests (RF1...3) trained on different distributions

using ∼ 80, 000 pairs with
(
1/25
)2

= 0.16% pairs drawn from same datasets. In Figure 3.15(a)

observe that the accuracy of RF is quite susceptible to changes in the distribution of the

training data. RF 2 and RF 3 were trained with 0.64% and 1.28% pairs from same datasets,

respectively. While RF 2 performs marginally better than the predictor, RF 1 and RF 3

perform worse.

3.4.2 Profiling Accuracy

I demonstrate the accuracy of FlashProfile along two dimensions:

• Partitions: The sampling and approximation techniques preserve partitioning accuracy

• Descriptions: The generated profiles are natural — not overly specific or general

For these experiments, I used FlashProfile with only the default atoms.

80

Figure 3.16: FlashProfile’s partitioning accuracy with different 〈µ, θ〉-configurations

Partitioning For each c ∈ {2, . . . , 8}, I measure FlashProfile’s ability to repartition

256c strings — 256 strings collected from each of c randomly picked datasets from Clean.

Over 10 runs for each c, I pick different sets of c files, shuffle the 256c strings, and invoke

FlashProfile to partition them into c clusters. For a fair distribution of strings across

each run, I ignore one dataset from the Clean group which had much longer strings (> 1500

characters) compared to other datasets (10 – 100 characters). I experiment with different

values of 1.0 ≤ µ ≤ 5.0 (string-sampling factor, which controls the size of chunks given to

the core Profile method), and 1.0 ≤ θ ≤ 3.0 (pattern-sampling factor, which controls the

approximation during hierarchical clustering).

I measure the precision of clustering using symmetric uncertainty [WFH17], which is

a measure of normalized mutual information (NMI). An NMI of 1 indicates the resulting

partitioning to be identical to the original clusters, and an NMI of 0 indicates that the

final partitioning is unrelated to the original one. For each 〈µ, θ〉-configuration, I show

the mean NMI of the partitionings over 10c runs (10 for each value of c), in Figure 3.16.

The NMI improves with increasing θ, since I sample more dissimilarities, resulting in better

approximations. However, the NMI drops with increasing µ, since more pairwise dissimilarities

are approximated. Note that the number of string pairs increases quadratically with µ, but

81

reduces only linearly with θ. This is reflected in Figure 3.16 — for µ > 4.0, the partitioning

accuracy does not reach 1.0 even for θ = 3.0. FlashProfile’s default configuration

〈µ = 4.0, θ = 1.25〉, achieves a median NMI of 0.96 (mean 0.88) (indicated by a circled

point). The dashed line indicates the median NMIs with µ = 4.0. The median NMI is

significantly higher than the mean, indicating the approximations were accurate in most

cases. As I explain below in § 3.4.3, with 〈µ = 4.0, θ = 1.25〉, FlashProfile achieves the

best performance vs. accuracy trade-off.

Descriptions I evaluate the suitability of the default profiles, by measuring their overall

precision and recall. A natural profile should not be too specific — it should generalize well

over the dataset (high true positives), but not beyond it (low false positives).

Figure 3.17: Quality of descriptions at 〈µ = 4.0, θ = 1.25〉

For each dataset in the Domains,

I profile a randomly selected 20%

of its strings, and measure: (a) the

fraction of the remaining dataset de-

scribed by it, and (b) the fraction

of an equal number of strings from

other datasets, matched by it. Fig-

ure 3.17 summarizes the results. The

lighter and darker shades indicate the fraction of true positives and false positives respectively.

The white area at the top indicates the fraction of false negatives – the fraction of the

remaining 80% of the dataset that is not described by the profile. The overall precision is

97.8%, and recall is 93.4%. The dashed line indicates a mean true positive rate of 93.2%,

and the dotted line shows a mean false positive rate of 2.3%; across all datasets.

I also perform similar quality measurements with Microsoft SSDT [Cor17d] and Atac-

cama [Cor17a]. I use “Column Pattern Profiling Tasks” feature within Microsoft SSDT

with PercentageDataCoverageDesired = 100, and “Pattern Analysis” feature within the At-

82

(a) Microsoft SSDT [Cor17d] (b) Ataccama [Cor17a]

Figure 3.18: Quality of descriptions from current state-of-the-art tools

accama platform. I summarize the per-dataset description quality for Microsoft SSDT in

Figure 3.18(a), and for Ataccama in Figure 3.18(b). A low overall F1 score is observed for

both tools.

While Microsoft SSDT has a very high false positive rate, Ataccama has a high failure

rate. For 27 out of 63 datasets, Microsoft SSDT generates “.*” as one of the patterns, and it

fails to profile one dataset that has very long strings (up to 1536 characters). On the other

hand, Ataccama fails to profile 33 datasets. But for the remaining 30 datasets, the simple

atoms (digits, numbers, letters, words) used by Ataccama seem to work well — the profiles

exhibit high precision and recall. Note that, this quantitative measure only captures the

specificity of profiles, but not their readability. I present a qualitative comparison of profiles

generated by these tools in Section 3.4.4.

3.4.3 Performance

I measure the mean profiling time with various 〈µ, θ〉-configurations, and summarize the

findings in Figure 3.19(a). The dotted lines indicate profiling time without pattern sampling,

i.e. θ →∞, for different values of the µ factor. The dashed line shows the median profiling

time for different values of θ with the default µ = 4.0. I also show the performance-accuracy

trade off in Figure 3.19(b) by measuring the mean speed up of each configuration w.r.t.

83

(a) Mean Profiling Time (b) Performance ∼ Accuracy

Figure 3.19: Impact of sampling on performance (using the same colors and markers as Figure 3.16)

〈µ = 1.0, θ = 1.0〉. I select the Pareto optimal point 〈µ = 4.0, θ = 1.25〉 as FlashProfile’s

default configuration. It achieves a mean speed up of 2.3× over 〈µ = 1.0, θ = 1.0〉, at a mean

NMI of 0.88 (median = 0.96).

As one would expect, the profiling time increases with θ, due to sampling more patterns,

which in turn result in more calls to LFP. The dependence of profiling time on µ however,

is more interesting. Notice that with µ = 1, the profiling time is higher than any other

configurations, when pattern sampling is enabled, i.e. θ 6= ∞ (solid lines). This is due

to the fact that FlashProfile learns very specific profiles with µ = 1 with very small

samples of strings, which do not generalize well over the remaining data. This results in

many Sample-Profile-Filter iterations. Also note that with pattern-sampling enabled, the

profiling time decreases with µ until µ = 4.0 as, and then increases as profiling larger samples

of strings becomes expensive.

Finally, I evaluate FlashProfile’s performance on end-to-end real-life profiling tasks

on all 75 datasets, that have a mixture of clean and dirty datasets. Over 153 tasks – 76

for automatic profiling, and 77 for refinement, The median profiling time is roughly 0.7 s.

With the default configuration, 77% of the requests are fulfilled within 2 seconds – 70% of

84

Figure 3.20: Performance of FlashProfile over real-life datasets

automatic profiling tasks, and 83% of refinement tasks. In Figure 3.20 I show the variance of

profiling times w.r.t. size of the datasets (number of strings in them), and the average length

of the strings in the datasets (all axes being logarithmic). Observe that the number of string

in the dataset doesn’t have a strong impact on the profiling time. This is expected, since I

only sample smaller chunks of datasets, and remove strings that are already described by

the profile I have learned so far. I repeated this experiment with 5 dictionary-based custom

atoms: 〈DayName〉, 〈ShortDayName〉, 〈MonthName〉, 〈ShortMonthName〉, 〈US_States〉, and

noticed an increase of ∼ 0.02 s in the median profiling time.

3.4.4 Comparison of Learned Profiles

19 Dataset collected from a database of vendors across US and Canada: https://goo.gl/PGS2pL

85

https://goo.gl/PGS2pL

Zip Code

99518

61021-9150
...

2645

83716
...

K0K 2C0

14480

S7K7K9

(a) Dataset

LDL DLD

LDLDLD

N-N

N

(b) Ataccama

\w\w\w \w\w\w

\d\d\d\d\d

\d\d\d\d

.*

(c) Microsoft SSDT

U D U ␣ D U D

“61” D 3 “-” D 4

“S7K7K9”
D+

ε

(d) FlashProfile

U D U ␣ D U D

“61” D 3 “-” D 4

“S7K7K9”
D 5

D 4

ε

(e) FlashProfile (6)

Most frequent pattern from PottersWheel= int

Table 3.5: Profiles for a dataset with zip codes19

I compare the profiles learned by FlashProfile to the outputs from 3 state-of-the-art

tools: (a) Ataccama [Cor17a]: a dedicated profiling tool,, (b) Microsoft SSDT [Cor17d] a

feature-rich IDE for database applications, and (c) PottersWheel [RH01]: a tool that

detects the most frequent data pattern and predicts anomalies in data. Table 3.5 and Table 3.6

show the observed outputs. I list the profiles generated on requesting exactly k patterns

against FlashProfilek. For brevity, I (a) omit the concatenation operator “ � ” between

atoms, and (b) abbreviate Digit 7→ D, Upper 7→ U, AlphaSpace 7→ Π, AlphaDigitSpace 7→ Σ.

First, observe that Microsoft SSDT generates an overly general “.*” pattern in both cases.

Ataccama generates a very coarse grained profile in both cases, which although explains

the pattern of special characters, does not say much about other syntactic properties, such as

common prefixes, or fixed-length patterns. With FlashProfile, one can immediately notice

in Table 3.5(d), that “S7K7K9” is the only Canadian zip code which does not have a space

in the middle, and that some US zip codes have 4 digits instead of 5 (probably the leading

20 Dataset collected from https://portal.its.pdx.edu/fhwa

86

https://portal.its.pdx.edu/fhwa

Routes

OR-213

I-5 N

I-405 S

OR-141
...

OR-99E

US-26 E

12348 N CENTER

US-217 S
...

I-84 E

US 26(SUNSET)

OR-224

(a) Dataset

N L W

W N (W)

W N (W W W)

W-N

W-NW

W-N W

(b) Ataccama

US-26 E

US-26 W

I-5 N

I-5 S

I-84 E

I-84 W

I-\d\d\d N

I-\d\d\d S

.*

(c) Microsoft SSDT

“12348 N CENTER”

“US 26(” Π+ “)”

U+ “-” Σ+

ε

(d) FlashProfile

“12348 N CENTER”

“US 26(SUNSET)”

“US 26(MT HOOD HWY)”

U+ “-” D+

U 2 “-” D 2 U+

U+ “-” D+ ␣ U+

ε

(e) FlashProfile (7)

“US-30BY” “12348 N CENTER”
ε “US 26(SUNSET)”

U+ “-” D+ “OR-99” U 1

“I-” D+ ␣ U+ U 2 “-2” D+ ␣ U 1

“US 26(MT HOOD HWY)”

(f) FlashProfile (9)

“US-30BY” “12348 N CENTER”
“I-5” “US-26” ␣ U 1

“US-30” “US 26(SUNSET)”
“OR-” D+ “OR-99” U 1

“I-5” ␣ U+ “I-” D+ ␣ U 1

ε “OR-217” ␣ U 1

“US 26(MT HOOD HWY)”

(g) FlashProfile (13)

Most frequent pattern from PottersWheel= IspellWord int space AllCapsWord

Table 3.6: Profiles for a dataset containing US routes20

zero was lost while interpreting it as a number). Similarly, one can immediately observe that

in Table 3.6(d), “12348 N CENTER” is not a route. Similarly the pattern “US 26(” Π+ “)”

indicates that it is the only entry with a space instead of a dash between the “US” and “26”.

In many real-life scenarios, simple statistical profiles are not enough for data understanding

or validation. FlashProfile allows users to gradually drill into the data by requesting

profiles with a desired granularity. Furthermore, they may also provide custom atoms for

domain-specific profiling.

87

3.5 Applications in PBE Systems

In this section, I discuss how syntactic profiles can improve programming-by-example

(PBE) [Lie01, GPS17] systems, which synthesize a desired program from a small set of input-

output examples. For instance, given an example “Albert Einstein” “A.E.”, the system

should learn a program that extracts the initials for names. Although many PBE systems

exist today, most share criticisms on low usability and confidence in them [Lau09, MSG15].

Examples are an inherently under-constrained form of specifying the desired program

behavior. Depending on the target language, a large number of programs may be consistent

with them. Two major challenges faced by PBE systems today are: (a) obtaining a set

of examples that accurately convey the desired behavior to limit the space of synthesized

programs, and (b) ranking these programs to select the ones that are natural to users.

In a recent work, Ellis et al. [EG17] address (b) using data profiles. They show that

incorporating profiles for input-output examples significantly improves ranking, compared

to traditional techniques which only examine the structure of the synthesized programs. I

show that data profiles can also address problem (a). Raychev et al. [RBV16] have presented

representative data samplers for synthesis scenarios, but they require the outputs for all

inputs. In contrast, I show a novel interaction model for proactively requesting users to supply

the desired outputs for syntactically different inputs, thereby providing a representative set

of examples to the PBE system.

Significant Inputs Typically, users provide outputs for only the first few inputs of target

dataset. However, if these are not representative of the entire dataset, the system may not

learn a program that generalizes over other inputs. Therefore, I propose a novel interaction

model that requests the user to provide the desired outputs for significant inputs, incrementally.

A significant input is one that is syntactically the most dissimilar with all previously labelled

inputs.

88

func OrderPartitions〈L,C〉(P̃ : Profile)

output: A sequence of partitions 〈S1, . . . ,S|P̃ |〉 over S

� Select with the partition that has the minimum cost.

1: ρ←
〈(

argmin
X∈P̃ C(X.Pattern, X.Data)

)
.Data

〉
2: while | ρ | < | P̃ | do

� Pick the most dissimilar partition w.r.t.those in ρ.

3: T ← argmax
Z∈P̃ minX∈ρ

(
LearnBestPattern〈L,C〉(Z.Data ∪X)

)
.Cost

4: ρ.Append(T.Data)

5: return ρ

Figure 3.21: Ordering partitions by mutual dissimilarity

I start with a syntactic profile P̃ for the input dataset and invoke the OrderPartitions

function, listed in Figure 3.21, to order the partitions identified in P̃ based on mutual dissim-

ilarity, i.e. each partition Si must be as dissimilar as possible with (its most-similar neighbor

within) the partitions {S1, . . . ,Si−1}. It is a simple extension of the SampleDissimilarities

procedure (Figure 3.8) to work with sets of strings instead of strings. I start with the partition

that can be described with the minimum-cost pattern. Then, from the remaining partitions,

I iteratively select the one that is most dissimilar to those previously selected. I define the

dissimilarity between two partitions as the cost of the best (least-cost) pattern required to

describe them together.

Once I have an ordered set of partitions, 〈S1, . . . ,S|P̃ |〉, I request the user to provide the

desired output for a randomly selected input from each partition in order. Since PBE systems

like Flash Fill are interactive, and start synthesizing programs right from the first example,

the user can inspect and skip over inputs for which the output is correctly predicted by the

synthesized program. After one cycle through all partitions, I restart from partition S1, and

request the user to provide the output for a new random string in each partition.

89

Figure 3.22: Examples needed with and without FlashProfile

I evaluate the proposed interaction model over 163 Flash Fill benchmarks21 that require

more than one example to learn the desired string-transformation program. Figure 3.22

compares the number of examples required originally, to that using the interaction model.

Seven cases that timeout due to the presence of extremely long strings have been omitted.

Over the remaining 156 cases, Flash Fill (a) requires a single example per partition

for 131 (= 80%) cases, and (b) uses the minimal set22 of examples to synthesize the desired

program for 140(=86%) cases — 39 of which were improvements over Flash Fill. Thus,

(1) validates the hypothesis that the partitions indeed identify representative inputs, and

(2) further indicates that the interaction model is highly effective. Selecting inputs from

partitions ordered based on mutual syntactic dissimilarity helps Flash Fill converge to the

desired programs with fewer examples. Note that, these results are based on the default set

of atoms. Designing custom atoms for string-transformation tasks, based on Flash Fill’s

semantics is also an interesting direction.

21 These benchmarks are a superset of the original set of Flash Fill [Gul11] benchmarks, with many more

real-world scenarios collected from customers using products powered by PROSE [Cor17e].

22 By minimal, I mean that there is no smaller set of examples with which Flash Fill can synthesize the

desired program.

90

Although the significant inputs scenario is similar to active learning, which is well studied

in machine-learning literature [Han14], typical active-learning methods require hundreds of

labeled examples. In contrast, PBE systems deal with very few examples [MSG15].

3.6 Related Work

There has been a line of work on profiling various aspects of datasets — Abedjan et al. [AGN15]

present a recent survey. Traditional techniques for summarizing data target statistical pro-

files [CGH12], such as sampling-based aggregations [HNS95], histograms [Ioa03], and wavelet-

based summaries [KM07]. However, pattern-based profiling is relatively underexplored, and

is minimally or not supported by state-of-the-art data analysis tools [Inc10, Cor17d, Cor17a,

Tri17].

To the knowledge, no existing approach learns syntactic profiles over an extensible language

and allows refinement of generated profiles. I present a novel dissimilarity measure which is

the key to learning refinable profiles over arbitrary user-specified patterns. Microsoft’s SQL

Server Data Tools (Microsoft SSDT) [Cor17d] learns rich regular expressions but is neither

extensible not comprehensive. A dedicated profiling tool Ataccama [Cor17a] generates

comprehensive profiles over a very small set of base patterns. Google OpenRefine [Inc10]

does not learn syntactic profiles, but it allows clustering of strings using character-based

similarity measures [GF13]. In § 3.4 I show that such measures do not capture syntactic

similarity. While PottersWheel [RH01] does not learn a complete profile, it learns the

most frequent data pattern over arbitrary user-defined domains that are similar to the atomic

patterns.

Application-Specific Structure Learning There has been prior work on learning specific

structural properties aimed at aiding data wrangling applications, such as data transfor-

mations [RH01, Sin16], information extraction [LKR08], and reformatting or text normal-

91

ization [KG15]. However, these approaches make specific assumptions regarding the target

application, which do not necessarily hold when learning general purpose profiles. Although

profiles generated by FlashProfile are primarily aimed at data understanding, in § 3.5 I

show that they may aid PBE applications, such as Flash Fill [Gul11] for data transfor-

mation. Bhattacharya et al. [BHC15] also utilize hierarchical clustering to group together

sensors used in building automation based on their tags. However, they use a fixed set of

domain-specific features for tags and do not learn a pattern-based profile.

Grammar Induction Syntactic profiling is also related to the problem of learning regular

expressions, or more generally grammars from a given set of examples. De la Higuera [Hig10]

present a recent survey on this line of work. Most of these techniques, such as LStar [Ang87]

and RPNI [OG92], assume availability of both positive and negative examples, or a mem-

bership oracle. Bastani et al. [BSA17] show that these techniques are either too slow or do

not generalize well and propose an alternate strategy for learning grammars from positive

examples. When a large number of negative examples are available, genetic programming

has also been shown to be useful for learning regular expressions [Svi98, BDD12]. Finally,

LearnPADS [FWZ08, ZFW12] also generates a syntactic description, but does not support

refinement or user-specified patterns.

Program Synthesis The techniques for sampling-based approximation and finding repre-

sentative inputs relate to prior work by Raychev et al. [RBV16] on synthesizing programs

from noisy data. However, they assume a single target program and the availability of outputs

for all inputs. In contrast, I synthesize a disjunction of several programs, each of which

returns true only on a specific partition of the inputs, which is unknown a priori.

FlashProfile’s pattern learner uses the PROSE library [Cor17e], which implements the

FlashMeta framework [PG15] for inductive program synthesis, specifically programming-

by-examples (PBE) [Lie01, GPS17]. PBE has been leveraged by recent works on automat-

92

ing repetitive text-processing tasks, such as string transformation [Gul11, Sin16], extrac-

tion [LG14], and format normalization [KG15]. However, unlike these applications, data

profiling does not solicit any (output) examples from the user. I demonstrate a novel

application of a supervised synthesis technique to solve an unsupervised learning problem.

93

CHAPTER 4

Overfitting in Program Synthesis

The previous chapters utilized different forms of program synthesis for generating invariants

and data profiles from a user-specified grammar. In this chapter I take a step back and

investigate a common challenge in scaling these synthesis techniques to complex grammars.

Specifically, I study the impact of grammar expressiveness on the performance of grammar-

based example-driven synthesis.

The syntax-guided synthesis (SyGuS) framework [ABJ13] provides a unified format to

describe a program synthesis problem by supplying (a) a logical specification for the desired

functionality, and (b) a grammar of allowed implementations. Given these two inputs, a

SyGuS tool searches through the programs that are permitted by the grammar to generate

one that meets the specification. Today, SyGuS is at the core of several state-of-the-art

program synthesizers [END18, PSM16, ARU17, LCL17, LHA18], many of which compete

annually in the SyGuS competition [Org14, AF19].

I demonstrate empirically that five state-of-the-art SyGuS tools are very sensitive to

the choice of grammar. Increasing grammar expressiveness allows the tools to solve some

problems that are unsolvable with less-expressive grammars. However, it also causes them

to fail on many problems that the tools are able to solve with a less expressive grammar. I

analyze the latter behavior both theoretically and empirically and present techniques that

make existing tools much more robust in the face of increasing grammar expressiveness.

I restrict my investigation to a widely used approach [ASF18] to SyGuS called counterexample-

guided inductive synthesis (CEGIS) [Sol13, §5]. In this approach, the synthesizer is composed

94

of a learner and an oracle. The learner iteratively identifies a candidate program that is

consistent with a given set of examples (initially empty) and queries the oracle to either prove

that the program is correct, i.e. meets the given specification, or obtain a counterexample

that demonstrates that the program does not meet the specification. The counterexample is

added to the set of examples for the next iteration. The iterations continue until a correct

program is found or resource/time budgets are exhausted. The LoopInvGen technique

presented in Chapter 2 utilized the CEGIS approach for inferring provably sufficient loop

invariants for program verification.

Overfitting. To better understand the observed performance degradation, I instrumented

one of these SyGuS tools (Section 4.1.2). I empirically observe that for a large number

of problems, the performance degradation on increasing grammar expressiveness is often

accompanied by a significant increase in the number of counterexamples required. Intuitively,

as grammar expressiveness increases so does the number of spurious candidate programs,

which satisfy a given set of examples but violate the specification. If the learner picks such a

candidate, then the oracle generates a counterexample, the learner searches again, and so on.

In other words, increasing grammar expressiveness increases the chances for overfitting,

a well-known phenomenon in machine learning (ML). Overfitting occurs when a learned

function explains a given set of observations but does not generalize correctly beyond it.

Since SyGuS is indeed a form of function learning, it is perhaps not surprising that it is prone

to overfitting. However, I identify its specific source in the context of SyGuS — the spurious

candidates induced by increasing grammar expressiveness — and show that it is a significant

problem in practice. I formally define the potential for overfitting (Ω), in Definition 4.7, which

captures the number of spurious candidates.

No Free Lunch. In the ML community, this tradeoff between expressiveness and overfitting

has been formalized for various settings as no-free-lunch (NFL) theorems [SB14, §5.1].

95

Intuitively such a theorem says that for every learner there exists a function that cannot be

efficiently learned, where efficiency is defined by the number of examples required. I prove

corresponding NFL theorems for the CEGIS-based SyGuS setting (Theorems 4.1 and 4.2).

A key difference between the ML and SyGuS settings is the notion of m-learnability.

In the ML setting, the learned function may differ from the true function, as long as this

difference (expressed as an error probability) is relatively small. However, because the learner

is allowed to make errors, it is in turn required to learn given an arbitrary set of m examples

(drawn from some distribution). In contrast, the SyGuS learning setting is all-or-nothing —

either the tool synthesizes a program that meets the given specification or it fails. Therefore,

it would be overly strong to require the learner to handle an arbitrary set of examples.

Instead, I define a much weaker notion of m-learnability for SyGuS, which only requires

that there exist a set of m examples for which the learner succeeds. Yet, my NFL theorem

shows that even this weak notion of learnability can always be thwarted: given an integer

m ≥ 0 and an expressive enough (as a function of m) grammar, for every learner there exists

a SyGuS problem that cannot be learned without access to more than m examples. I also

prove that overfitting is inevitable with an expressive enough grammar (Theorems 4.3 and 4.4)

and that the potential for overfitting increases with grammar expressiveness (Theorem 4.5).

Mitigating Overfitting. Inspired by ensemble methods [Die00] in ML, which aggregate

results from multiple learners to combat overfitting (and underfitting), I propose PLearn —

a black-box framework that runs multiple parallel instances of a SyGuS tool with different

grammars. Although prior SyGuS tools run multiple instances of learners with different

random seeds [JQS15, BCD11], to my knowledge, this is the first proposal to explore multiple

grammars as a means to improve the performance of SyGuS. My experiments indicate

that PLearn significantly improves the performance of five state-of-the-art SyGuS tools —

CVC4 [RDK15, BCD11], EUSolver [ARU17], LoopInvGen [PSM16], SketchAC [JQS15,

Sol13], and Stoch [ABJ13, III F].

96

However, running parallel instances of a synthesizer is computationally expensive. Hence,

I also devise a white-box approach, called hybrid enumeration, that extends the enumerative

synthesis technique [AGK13] to efficiently interleave exploration of multiple grammars in a

single SyGuS instance. I have implemented hybrid enumeration within LoopInvGen23 and

show that the resulting single-threaded learner, HE+LoopInvGen, has negligible overhead

but achieves performance comparable to that of PLearn for LoopInvGen. Moreover,

HE+LoopInvGen significantly outperforms the winner [PSM17] of the invariant-synthesis

(Inv) track of 2018 SyGuS competition [AF19] — a variant of LoopInvGen specifically

tuned for the competition — including a 5× mean speedup and solving two SyGuS problems

that no tool in the competition could solve.

Contributions. In summary, I present the following contributions:

(§ 4.1) I empirically observe that, in many cases, increasing grammar expressiveness degrades

performance of existing SyGuS tools due to overfitting.

(§ 4.2) I formally define overfitting and prove no-free-lunch theorems for the SyGuS setting,

which indicate that overfitting with increasing grammar expressiveness is a fundamental

characteristic of SyGuS.

(§ 4.3) I propose two mitigation strategies – (a) a black-box technique that runs multi-

ple parallel instances of a synthesizer, each with a different grammar, and (b) a

single-threaded enumerative technique, called hybrid enumeration, that interleaves

exploration of multiple grammars.

(§ 4.4) I show that incorporating these mitigating measures in existing tools significantly

improves their performance.

23 The implementation and benchmarks are available at https://github.com/SaswatPadhi/LoopInvGen.

97

https://github.com/SaswatPadhi/LoopInvGen

4.1 Motivation

In this section, I first present empirical evidence that existing SyGuS tools are sensitive to

changes in grammar expressiveness. Specifically, I show that as I increase the expressiveness

of the provided grammar, every tool starts failing on some benchmarks that it was able to

solve with less-expressive grammars. I then investigate one of these tools in detail.

4.1.1 Grammar Sensitivity of SyGuS Tools

〈b〉 |= true | false | 〈Bool variables〉
| (not b) | (or b b) | (and b b)

〈i〉 |= 〈Int constants〉 | 〈Int variables〉

� Additional rule in Equalities grammar :

〈b〉 |=+

(= i i)

� Additional rules in Intervals grammar :

〈b〉 |=+

(> i i) | (>= i i)

| (< i i) | (<= i i)

� Additional rules in Octagons grammar :

〈i〉 |=+

(+ i i) | (- i i)

� Additional rule in Polyhedra grammar :

〈i〉 |=+

(*S i i)

� Additional rule in Polynomials grammar :

〈i〉 |=+

(*N i i)

� Additional rule in Peano grammar :

〈i〉 |=+

(div i i) | (mod i i)

Figure 4.1: Grammars of quantifier-free

predicates over integers 24

I evaluated 5 state-of-the-art SyGuS tools that use

very different techniques:

• SketchAC [JQS15] extends the Sketch syn-

thesis system [Sol13] by combining both explicit

and symbolic search techniques.

• Stoch [ABJ13, III F] performs a stochastic

search for solutions.

• EUSolver [ARU17] combines enumeration

with unification strategies.

• Reynolds et al. [RDK15] extend CVC4 [BCD11]

with a refutation-based approach.

• LoopInvGen [PSM16] combines enumeration

and Boolean function learning.

I ran these five tools on 180 invariant-synthesis benchmarks, which I describe in Sec-

tion 4.4. I ran the benchmarks with each of the six grammars of quantifier-free predicates,

which are shown in Figure 4.1. These grammars correspond to widely used abstract do-

mains in the analysis of integer-manipulating programs — Equalities, Intervals [CC77b],

24 We use the |=+ operator to append new rules to previously defined nonterminals.

98

Figure 4.2: For each grammar, each tool, the ordinate shows the number of benchmarks that fail with

the grammar but are solvable with a less-expressive grammar.

Octagons [Min06], Polyhedra [CH78], algebraic expressions (Polynomials) and arbitrary integer

arithmetic (Peano) [Pea88]. The *S operator denotes scalar multiplication, e.g.(*S 2 x), and

*N denotes nonlinear multiplication, e.g.(*N x y).

In Figure 4.2, I report my findings on running each benchmark on each tool with each

grammar, with a 30-minute wall-clock timeout. For each 〈tool, grammar〉 pair, the y-axis

shows the number of failing benchmarks that the same tool is able to solve with a less-

expressive grammar. Observe that, for each tool, the number of such failures increases with

the grammar expressiveness. For instance, introducing the scalar multiplication operator (*S)

causes CVC4 to fail on 21 benchmarks that it is able to solve with Equalities (4/21), Intervals

(18/21), or Octagons (10/21). Similarly, adding nonlinear multiplication causes LoopInvGen

to fail on 10 benchmarks that it can solve with a less-expressive grammar.

4.1.2 Evidence for Overfitting

To better understand this phenomenon, I instrumented LoopInvGen [PSM16] to record

the candidate expressions that it synthesizes and the number of CEGIS iterations (called

rounds henceforth). I compare each pair of successful runs of each of my 180 benchmarks on

99

Increase (↑) Unchanged (=) Decrease (↓)

Expressiveness↑ ∧ Time↑ → Rounds ? 27 % 67 % 6 %
Expressiveness↑ ∧ Rounds↑ → Time ? 79 % 6 % 15 %

Table 4.1: Observed correlation between synthesis time and number of rounds, upon increasing grammar

expressiveness, with LoopInvGen [PSM16] on 180 benchmarks

distinct grammars.25 In 65% of such pairs, performance degradation is observed with the

more expressive grammar. I also report the correlation between performance degradation

and number of rounds for the more expressive grammar in each pair in Table 4.1.

In 67% of the cases with degraded performance upon increased grammar expressiveness,

the number of rounds remains unaffected — indicating that this slowdown is mainly due to a

larger search space. However, there is significant evidence of performance degradation due

to overfitting as well. Note an increase in the number of rounds for 27% of the cases with

degraded performance. Moreover, I notice performance degradation in 79% of all cases that

required more rounds on increasing grammar expressiveness.

1: assume (0 ≤ n ∧ 0 ≤ m ≤ n)

2: assume (x = 0 ∧ y = m)

3: while (x < n) do

4: x← x+ 1

5: if (x > m) then y ← y + 1

6: assert (y = n)

Figure 4.3: The fib_19 benchmark [GJ07]

Thus, a more expressive grammar not only

increases the search space, but also makes it more

likely for LoopInvGen to overfit — select a

spurious expression, which the oracle rejects with

a counterexample, hence requiring more rounds.

In the remainder of this section, I demonstrate

this overfitting phenomenon on the verification

problem shown in Figure 4.3, an example by Gulwani et al. [GJ07], which is the fib_19

benchmark in the Inv track of SyGuS-Comp 2018 [AF19].

25 I ignore failing runs since they require an unknown number of rounds.

100

For Figure 4.3, an inductive invariant must be strong enough to prove that the assertion

on line 6 always holds. In the SyGuS setting, the invariant is a predicate I : Z 4 → B defined

on a symbolic state σ = 〈m,n, x, y〉, that satisfies ∀σ. ϕ(I, σ) for the specification ϕ:26

ϕ(I, σ)
def
=
(
0 ≤ n ∧ 0 ≤ m ≤ n ∧ x = 0 ∧ y = m

)
=⇒ I(σ) (precondition)

∧ ∀σ′.
(
I(σ) ∧ T (σ, σ′)

)
=⇒ I(σ′) (inductiveness)

∧
(
x ≥ n ∧ I(σ)

)
=⇒ y = n (postcondition)

where σ′ = 〈m′, n′, x′, y′〉 denotes the new state after one iteration, and T is a transition

relation that describes the loop body:

T (σ, σ′)
def
= (x < n) ∧ (x′ = x+ 1) ∧ (m′ = m) ∧ (n′ = n)

∧
[

(x′ ≤ m ∧ y′ = y) ∨ (x′ > m ∧ y′ = y + 1)
]

In Table 4.2(a), I report the performance of LoopInvGen on fib_19 (Figure 4.3) with my

six grammars (Figure 4.1). It succeeds with all but the least-expressive grammar. However,

as grammar expressiveness increases, the number of rounds increase significantly — from 19

rounds with Intervals to 88 rounds with Peano.

LoopInvGen converges to the exact same invariant with both Polyhedra and Peano

but requires 30 more rounds in the latter case. Tables 4.2(b) and 4.2(c) show some expres-

sions synthesized with Polyhedra and Peano respectively. These expressions are solutions

to intermediate subproblems — the final invariant is a conjunction of a subset of these

expressions [PSM16, §3.2]. The expressions generated with the Peano grammar are quite

complex and unlikely to generalize well. Peano’s extra expressiveness leads to more spurious

candidates, increasing the chances of overfitting and making the benchmark harder to solve.

26 I use the symbols B, N, and Z to denote the sets of all Boolean values, all natural numbers (positive

integers), and all integers respectively.

101

Increasing expressiveness →

Equalities Intervals Octagons Polyhedra Polynomials Peano

× 0.32 s 2.49 s 2.48 s 55.3 s 68.0 s
FAIL (19 rounds) (57 rounds) (57 rounds) (76 rounds) (88 rounds)

(a) Synthesis time and number of CEGIS iterations (rounds) with various grammars

16: (x ≥ n) ∨ (x+ 1 < n) ∨ (m ≥ x ∧ m = y)

28: (x = y) ∨ (y +m− n = x) ∨ (x+ 2 < n)

57: (m = y) ∨ (x ≥ m ∧ x ≥ y)

(b) Sample predicates with Polyhedra

16: (x ≥ n) ∨ (x+ 1 < n) ∨
(2y = n) ∨ (y (m− 1) = m)

28: (y = 1) ∨ (y = 0) ∨ (m < 1) ∨ (x2y > 1)

57: (x+ 1 ≥ n) ∨ (x+ 2 < n) ∨
((m− n)(x− y) = 1)

(c) Sample predicates with Peano

Solution in both grammars: (n ≥ y) ∧ (y ≥ x) ∧ ((m = y) ∨ (x ≥ m ∧ x ≥ y))

Table 4.2: Performance of LoopInvGen [PSM16] on the fib_19 benchmark (Figure 4.3). In (b) and

(c), we show predicates generated at various rounds (numbered in bold).

4.2 SyGuS Overfitting in Theory

In this section, first I formalize the counterexample-guided inductive synthesis (CEGIS)

approach [Sol13] to SyGuS, in which examples are iteratively provided by a verification oracle.

I then state and prove no-free-lunch theorems, which show that there can be no optimal

learner for this learning scheme. Finally, I formalize a natural notion of overfitting for SyGuS

and prove that the potential for overfitting increases with grammar expressiveness.

4.2.1 Preliminaries

I borrow the formal definition of a SyGuS problem from prior work [ABJ13]:

102

Definition 4.1 (SyGuS Problem). Given a background theory T, a function symbol f :

X → Y , and two constraints on f : (a) a semantic constraint, also called a specification,

ϕ(f, x) over the vocabulary of T along with f and a symbolic input x, and (b) a syntactic

constraint, also called a grammar, given by a (possibly infinite) set E of expressions over the

vocabulary of the theory T; find an expression e ∈ E such that the formula ∀x ∈ X.ϕ(e, x) is

valid modulo T.

I denote this SyGuS problem as 〈fX→Y |ϕ, E〉 T and say that it is satisfiable iff there exists

such an expression e, i.e. ∃ e ∈ E .∀x ∈ X.ϕ(e, x). I call e a satisfying expression for this

problem, denoted as e |= 〈fX→Y |ϕ, E〉 T.

Recall, I focus on a common class of SyGuS learners, namely those that learn from

examples. First I define the notion of input-output (IO) examples that are consistent with a

SyGuS specification:

Definition 4.2 (Input-Output Example). Given a specification ϕ defined on f : X → Y

over a background theory T, I call a pair 〈x, y〉 ∈ X × Y an input-output (IO) example for

ϕ, denoted as 〈x, y〉 |≈ T ϕ iff it is satisfied by some valid interpretation of f within T, i.e.

〈x, y〉 |≈ T ϕ
def
= ∃ e∗ ∈ T. e∗(x) = y ∧

(
∀x ∈ X.ϕ(e∗, x)

)
The next two definitions respectively formalize the two key components of a CEGIS-based

SyGuS tool: the verification oracle and the learner.

Definition 4.3 (Verification Oracle). Given a specification ϕ defined on a function f : X → Y

over theory T, a verification oracle Oϕ is a partial function that given an expression e, either

returns ⊥ indicating ∀x ∈ X.ϕ(e, x) holds, or gives a counterexample 〈x, y〉 against e, denoted

as e ×ϕ 〈x, y〉, such that

e ×ϕ 〈x, y〉
def
= ¬ϕ(e, x) ∧ e(x) 6= y ∧ 〈x, y〉 |≈ T ϕ

103

I omit ϕ from the notations Oϕ and ×ϕ when it is clear from the context.

Definition 4.4 (CEGIS-based Learner). A CEGIS-based learner LO(q, E) is a partial function

that given an integer q ≥ 0, a set E of expressions, and access to an oracle O for a specification

ϕ defined on f : X → Y , queries O at most q times and either fails with ⊥ or generates an

expression e ∈ E . The trace

[
e0 ×〈x0, y0〉, . . . , ep−1 ×〈xp−1, yp−1〉, ep

]
where 0 ≤ p ≤ q

summarizes the interaction between the oracle and the learner. Each ei denotes the ith

candidate for f and 〈xi, yi〉 is a counterexample ei, i.e.

(
∀j < i. ei(xj) = yj ∧ ϕ(ei, xj)

)
∧
(
ei ×ϕ 〈xi, yi〉

)
Note that I have defined oracles and learners as (partial) functions, and hence as deter-

ministic. In practice, many SyGuS tools are deterministic and this assumption simplifies the

subsequent theorems. However, I expect that these theorems can be appropriately generalized

to randomized oracles and learners.

4.2.2 Learnability and No Free Lunch

In the machine learning (ML) community, the limits of learning have been formalized for

various settings as no-free-lunch theorems [SB14, §5.1]. Here, I provide a natural form of

such theorems for CEGIS-based SyGuS learning.

In SyGuS, the learned function must conform to the given grammar, which may not be

fully expressive. Therefore I first formalize grammar expressiveness:

Definition 4.5 (k-Expressiveness). Given a domain X and range Y , a grammar E is said to

be k-expressive iff E can express exactly k distinct X → Y functions.

104

A key difference from the ML setting is my notion of m-learnability, which formalizes the

number of examples that a learner requires in order to learn a desired function. In the ML

setting, a function is considered to m-learnable by a learner if it can be learned using an

arbitrary set of m i.i.d. examples (drawn from some distribution). This makes sense in the

ML setting since the learned function is allowed to make errors (up to some given bound on

the error probability), but it is much too strong for the all-or-nothing SyGuS setting.

Instead, I define a much weaker notion of m-learnability for CEGIS-based SyGuS, which

only requires that there exist a set of m examples that allows the learner to succeed. The

following definition formalizes this notion.

Definition 4.6 (CEGIS-based m-Learnability). Given a SyGuS problem S = 〈fX→Y |ϕ, E〉 T
and an integer m ≥ 0, I say that S is m-learnable by a CEGIS-based learner L iff there exists

a verification oracle O under which L can learn a satisfying expression for S with at most m

queries to O, i.e.∃O : LO(m, E) |= S.

Finally I state and prove the no-free-lunch (NFL) theorems, which make explicit the

tradeoff between grammar expressiveness and learnability. Intuitively, given an integer m and

an expressive enough (as a function of m) grammar, for every learner there exists a SyGuS

problem that cannot be solved without access to at least m+ 1 examples. This is true despite

my weak notion of learnability.

Put another way, as grammar expressiveness increases, so does the number of examples

required for learning. On one extreme, if the given grammar is 1-expressive, i.e. can express

exactly one function, then all satisfiable SyGuS problems are 0-learnable — no examples are

needed because there is only one function to learn — but there are many SyGuS problems that

cannot be satisfied by this function. On the other extreme, if the grammar is |Y ||X|-expressive,

i.e. can express all functions from X to Y , then for every learner there exists a SyGuS problem

that requires all |X| examples in order to be solved.

105

Below I first present the NFL theorem for the case when the domain X and range Y are

finite. I then generalize to the case when these sets may be countably infinite.

Theorem 4.1 (NFL in CEGIS-based SyGuS on Finite Sets). Let X and Y be two arbitrary

finite sets, T be a theory that supports equality, E be a grammar over T, and m be an integer

such that 0 ≤ m < |X|. Then, either:

• E is not k-expressive for any k >
∑m

i=0

|X|! |Y |i
(|X| − i)! , or

• for every CEGIS-based learner L, there exists a satisfiable SyGuS problem S =

〈fX→Y |ϕ, E〉 T such that S is not m-learnable by L. Moreover, there exists a differ-

ent CEGIS-based learner for which S is m-learnable.

Proof. First, note that there are t =
∑m

i=0
|X|! |Y |i
(|X| − i)! distinct traces (sequences of counterex-

amples) of length at most m over X and Y . Now, consider some CEGIS-based learner L,

and suppose E is k-expressive for some k > t. Then, since the learner can deterministically

choose at most t candidates for the t traces, there must be at least one function f that is

expressible in E , but does not appear in the trace of LO(m, E) for any oracle O.

Let e be an expression in E that implements the function f . Then, we can define

the specification ϕ(f, x)
def
= f(x) = e(x) and the SyGuS problem S = 〈fX→Y |ϕ, E〉 T. By

construction, S is satisfiable since e |= S, but we have that LO(m, E) 6|= S for all oracles O.

So, by Definition 4.6, we have that S is not m-learnable by L.

However, we can construct a learner L′ such that S is m-learnable by L′. We construct

L′ such that L′ always produces e as its first candidate expression for any trace. The result

then follows by Definition 4.6.

Theorem 4.2 (NFL in CEGIS-based SyGuS on Countably Infinite Sets). Let X be an

arbitrary countably infinite set, Y be an arbitrary finite or countably infinite set, T be a theory

that supports equality, E be a grammar over T, and m be an integer such that m ≥ 0. Then,

either:

106

• E is not k-expressive for any k > ℵ0, where ℵ0
def
= |N|, or

• for every CEGIS-based learner L, there exists a satisfiable SyGuS problem S =

〈fX→Y |ϕ, E〉 T such that S is not m-learnable by L. Moreover, there exists a differ-

ent CEGIS-based learner for which S is m-learnable.

Proof. Consider some CEGIS-based learner L, and suppose E is k-expressive for some k > ℵ0.

Note that there are
∑m

i=0
|X|! |Y |i
(|X| − i)! distinct traces of length at most m over X and Y . Let

us overapproximate each |X|! |Y |i
(|X| − i)! as (|X| |Y |)m, and thus the number of distinct traces as

(m+ 1) (|X| |Y |)m. We have two cases for Y :

1. Y is finite i.e. |X| = ℵ0 and |Y | < ℵ0. Then, the number of distinct traces is at most

(m+ 1) (|X| |Y |)m = (ℵ0 |Y |)m = ℵ0. Or,

2. Y is countably infinite i.e. |X| = |Y | = ℵ0. Then, the number of distinct traces is at

most (m+ 1) (|X| |Y |)m = (ℵ0 ℵ0)m = ℵ0.

Thus, the number of distinct traces is at most ℵ0, i.e. countably infinite. Since the number

of distinct functions k > ℵ0, the claim follows using a construction similar to the proof of

Theorem 4.1.

4.2.3 Overfitting

Last, I relate the above theory to the notion of overfitting from ML. In the context of SyGuS,

overfitting can potentially occur whenever there are multiple candidate expressions that are

consistent with a given set of examples. Some of these expressions may not generalize to

satisfy the specification, but the learner has no way to distinguish among them (using just

the given set of examples) and so can “guess” incorrectly. I formalize this idea through the

following measure:

107

Definition 4.7 (Potential for Overfitting). Given a problem S = 〈fX→Y |ϕ, E〉 T and a set Z

of IO examples for ϕ, I define the potential for overfitting Ω as the number of expressions in

E that are consistent with Z but do not satisfy S, i.e.

Ω(S, Z)
def
=


∣∣{e ∈ E | e 6|= S ∧ ∀〈x, y〉 ∈ Z : e(x) = y

}∣∣ ∀z ∈ Z : z |≈ T ϕ

⊥ (undefined) otherwise

Intuitively, a zero potential for overfitting means that overfitting is not possible on

the given problem with respect to the given set of examples, because there is no spurious

candidate. A positive potential for overfitting means that overfitting is possible, and higher

values imply more spurious candidates and hence more potential for a learner to choose the

“wrong” expression.

The following theorems connect my notion of overfitting to the earlier NFL theorems by

showing that overfitting is inevitable with an expressive enough grammar.

Theorem 4.3 (Overfitting in SyGuS on Finite Sets). Let X and Y be two arbitrary finite

sets, m be an integer such that 0 ≤ m < |X|, T be a theory that supports equality, and E be

a k-expressive grammar over T for some k > |X|! |Y |m
m! (|X| −m)! . Then, there exists a satisfiable

SyGuS problem S = 〈fX→Y |ϕ, E〉 T such that Ω(S, Z) > 0, for every set Z of m IO examples

for ϕ.

Proof. First, note that there are t = |X|! |Y |m
m! (|X| −m)!

distinct ways of constructing a set of m IO

examples, over X and Y . Now, suppose E is k-expressive for some k > t. Then, there must

be at least one function f that is expressible in E , but every set of m IO examples that f is

consistent with is also satisfied by some other expressible function.

Let e be an expression in E that implements the function f . Then, we can define the

specification ϕ(f, x)
def
= f(x) = e(x) and the SyGuS problem S = 〈fX→Y |ϕ, E〉 T. The claim

then immediately follows from Definition 4.7.

108

Theorem 4.4 (Overfitting in SyGuS on Countably Infinite Sets). Let X be an arbitrary

countably infinite set, Y be an arbitrary finite or countably infinite set, T be a theory that

supports equality, and E be a k-expressive grammar over T for some k > ℵ0. Then, there

exists a satisfiable SyGuS problem S = 〈fX→Y |ϕ, E〉 T such that Ω(S, Z) > 0, for every set Z

of m IO examples for ϕ.

Proof. Let us overapproximate the number of distinct ways of constructing a set of m IO

examples, |X|! |Y |m
m! (|X| −m)!

as (|X| |Y |)m. Using cardinal arithmetic, as shown in the the proof of

Theorem 4.2, this number is always at most ℵ0. Then the claim follows using a construction

similar to the proof of Theorem 4.3.

Finally, it is straightforward to show that as the expressiveness of the grammar provided

in a SyGuS problem increases, so does its potential for overfitting.

Theorem 4.5 (Overfitting Increases with Expressiveness). Let X and Y be two arbitrary sets,

T be an arbitrary theory, E1 and E2 be grammars over T such that E1 ⊆ E2, ϕ be an arbitrary

specification over T and a function symbol f : X → Y , and Z be a set of IO examples for ϕ.

Then, I have

Ω
(
〈fX→Y |ϕ, E1〉 T , Z

)
≤ Ω

(
〈fX→Y |ϕ, E2〉 T , Z

)
Proof. If E1 ⊆ E2, then for any set Z ⊆ X × Y of IO examples, we have

{e ∈ E1 | ∀〈x, y〉 ∈ Z : e(x) = y} ⊆ {e ∈ E2 | ∀〈x, y〉 ∈ Z : e(x) = y}

The claim immediately follows from this observation and Definition 4.7.

4.3 Mitigating Overfitting

Ensemble methods [Die00] in machine learning (ML) are a standard approach to reduce

overfitting. These methods aggregate predictions from several learners to make a more

109

function PLearn(T : Synthesis Tool, 〈fX→Y |ϕ, E〉 T : Problem, E1...p : Subgrammars)
� Requires: ∀ Ei ∈ E1...p : Ei ⊆ E
1 parallel for i← 1, . . . , p do
2 Si ← 〈fX→Y |ϕ, Ei〉 T
3 ei ← T (Si)
4 if ei 6= ⊥ then return ei

5 return ⊥

Figure 4.4: The PLearn framework for SyGuS tools.

accurate prediction. In this section I propose two approaches, inspired by ensemble methods

in ML, for mitigating overfitting in SyGuS. Both are based on the key insight from Section 4.2.3

that synthesis over a subgrammar has a smaller potential for overfitting as compared to that

over the original grammar.

4.3.1 Parallel SyGuS on Multiple Grammars

My first idea is to run multiple parallel instances of a synthesizer on the same SyGuS problem

but with grammars of varying expressiveness. This framework, called PLearn, is outlined in

Figure 4.4. It accepts a synthesis tool T , a SyGuS problem 〈fX→Y |ϕ, E〉 T, and subgrammars

E1...p,27 such that Ei ⊆ E . The parallel for construct creates a new thread for each iteration.

The loop in PLearn creates p copies of the SyGuS problem, each with a different grammar

from E1...p, and dispatches each copy to a new instance of the tool T . PLearn returns the

first solution found or ⊥ if none of the synthesizer instances succeed.

Since each grammar in E1...p is subsumed by the original grammar E , any expression found

by PLearn is a solution to the original SyGuS problem. Moreover, from Theorem 4.5 it is

immediate that PLearn indeed reduces overfitting.

27 I use the shorthand X1,...,n to denote the sequence 〈X1, . . . ,Xn〉.

110

Theorem 4.6 (PLearn Reduces Overfitting). Given a SyGuS problem S = 〈fX→Y |ϕ, E〉 T,

if PLearn is instantiated with S and subgrammars E1...p such that ∀ Ei ∈ E1...p : Ei ⊆ E , then

for each Si = 〈fX→Y |ϕ, Ei〉 T constructed by PLearn, I have that Ω(Si, Z) ≤ Ω(S, Z) on any

set Z of IO examples for ϕ.

A key advantage of PLearn is that it is agnostic to the synthesizer’s implementation.

Therefore, existing SyGuS learners can immediately benefit from PLearn, as I demonstrate

in Section 4.4.1. However, running p parallel SyGuS instances can be prohibitively expensive,

both computationally and memory-wise. The problem is worsened by the fact that many

existing SyGuS tools already use multiple threads, e.g. the SketchAC [JQS15] tool spawns

9 threads. This motivates my hybrid enumeration technique described next, which is a novel

synthesis algorithm that interleaves exploration of multiple grammars in a single thread.

4.3.2 Hybrid Enumeration

Hybrid enumeration extends the enumerative synthesis technique, which enumerates expres-

sions within a given grammar in order of size and returns the first candidate that satisfies

the given examples [AGK13]. My goal is to simulate the behavior of PLearn with an enu-

merative synthesizer in a single thread. However, a straightforward interleaving of multiple

PLearn threads would be highly inefficient because of redundancies – enumerating the same

expression (which is contained in multiple grammars) multiple times. Instead, I propose

a technique that (a) enumerates each expression at most once, and (b) reuses previously

enumerated expressions to construct larger expressions.

To achieve this, I extend a widely used [AGK13, PGG14, FMV17] synthesis strategy,

called component-based synthesis [JGS10], wherein the grammar of expressions is induced by

a set of components, each of which is a typed operator with a fixed arity. For example, the

grammars shown in Figure 4.1 are induced by integer components (such as 1, +, mod, =, etc.)

111

and Boolean components (such as true, and, or, etc.). Below, I first formalize the grammar

that is implicit in this synthesis style.

Definition 4.8 (Component-Based Grammar). Given a set C of typed components, I define

the component-based grammar E as the set of all expressions formed by well-typed component

application over C , i.e.

E = { c(e1, . . . , ea) | (c : τ1 × · · · × τa → τ) ∈ C ∧ e1 . . . a ⊂ E

∧ e1 : τ1 ∧ · · · ∧ ea : τa }

where e : τ denotes that the expression e has type τ .

I denote the set of all components appearing in a component-based grammar E as

components(E). Henceforth, I assume that components(E) is known (explicitly provided by

the user) for each E . I also use values(E) to denote the subset of nullary components (variables

and constants) in components(E), and operators(E) to denote the remaining components with

positive arities.

The closure property of component-based grammars significantly reduces the overhead of

tracking which subexpressions can be combined together to form larger expressions. Given a

SyGuS problem over a grammar E , hybrid enumeration requires a sequence E1...p of grammars

such that each Ei is a component-based grammar and that E1 ⊂ · · · ⊂ Ep ⊆ E . Next, I

explain how the subset relationship between the grammars enables efficient enumeration of

expressions.

Given grammars E1 ⊂ · · · ⊂ Ep, observe that an expression of size k in Ei may only

contain subexpressions of size {1, . . . , (k− 1)} belonging to E1...i. This allows us to enumerate

expressions in an order such that each subexpression e is synthesized (and cached) before

any expressions that have e as a subexpression. I call an enumeration order that ensures this

property a well order.

112

Definition 4.9 (Well Order). Given arbitrary grammars E1...p, I say that a strict partial

order / on E1...p × N is a well order iff

∀ Ea, Eb ∈ E1...p : ∀ k1, k2 ∈ N : [Ea ⊆ Eb ∧ k1 < k2] =⇒ (Ea, k1) / (Eb, k2)

Motivated by Theorem 4.5, my implementation of hybrid enumeration uses a particular

well order that incrementally increases the expressiveness of the space of expressions. For a

rough measure of the expressiveness (Definition 4.5) of a pair (E , k), i.e. the set of expressions

of size k in a given component-based grammar E , I simply overapproximate the number of

syntactically distinct expressions as |components(E)|k. To see that this induces a well order,

I first prove the following lemma:

Lemma 4.7. Let E1 and E2 be two arbitrary component-based grammars. Then, if E1 ⊆ E2, it

must also be the case that components(E1) ⊆ components(E2), where components(Ei) denotes

the set of all components appearing in Ei.

Proof. Let C1 = components(E1), C2 = components(E2), and E1 ⊆ E2. Suppose C1 6⊆ C2.

Then, there must be at least one component c such that c ∈ C1 \ C2. By definition of

components(E1), the component c must appear in at least one expression e ∈ E1. However,

since c 6∈ C2, it must be the case that e 6∈ E2, thus contradicting E1 ⊆ E2. Hence, our

assumption C1 6⊆ C2 must be false.

Theorem 4.8. Let E1...p be component-based grammars and Ci = components(Ei). Then, the

following strict partial order /∗ on E1...p × N is a well order

∀ Ea, Eb ∈ E1...p : ∀m,n ∈ N : (Ea,m) /∗ (Eb, n) ⇐⇒ |Ca |m < |Cb |n

Proof. Let Ea and Eb be two component-based grammars in E1...p. By Lemma 4.7, we have

that Ea ⊆ Eb =⇒ components(E1) ⊆ components(E2). The claim then immediately follows

from Definition 4.9.

113

function HEnum(〈fX→Y |ϕ, E〉 T : Problem, E1...p : Grammars, / : WO, q : Max. Size)

� Requires: component-based grammars E1 ⊂ · · · ⊂ Ep ⊆ E and v as the input variable

1 C ← {}

2 for i← 1 to p do

3 V ← if i = 1 then values(E1) else [values(Ei) \ values(Ei−1)]

4 for each (e : τ) ∈ V do

5 C[i, 1][τ]← C[i, 1][τ] ∪ {e}

6 if ∀x ∈ X : ϕ(λv. e, x) then return λv. e

7 R← Sort(/, E1...p × {2, . . . , q})

8 for i← 1 to |R | do

9 (Ej, k)← R[i]

10 for l← 1 to j do

11 O ← if l = 1 then operators(E1) else [operators(El) \ operators(El−1)]

12 for each (o : τ1 × · · · × τa → τ) ∈ O do

13 L← Divide(a, k − 1, l, j, 〈〉)

14 for each
〈
(x1, y1), . . . , (xa, ya)

〉
∈ L do

15 for each e1 . . . a ∈ C[x1, y1][τ1]× · · · × C[xa, ya][τa] do

16 e← o(e1, . . . , ea)

17 C[j, k][τ]← C[j, k][τ] ∪ {e}

18 if ∀x ∈ X : ϕ(λv. e, x) then return λv. e

19 return ⊥

Figure 4.5: Hybrid enumeration to combat overfitting in SyGuS

114

function Divide(a : Arity, q : Size, l : Op. Level, j : Expr. Level, α : Accumulated Args.)

� Requires: 1 ≤ a ≤ q ∧ l ≤ j

1 if a = 1 then

2 if l = j ∨ ∃ 〈x, y〉 ∈ α : x = j then return
{

(1, q) � α, . . . , (j, q) � α
}

3 return
{

(j, q) � α
}

4 L = {}
5 for u← 1 to j do

6 for v ← 1 to (q − a+ 1) do

7 L← L ∪ Divide(a− 1, q − v, l, j, (u, v) � α)

8 return L

Figure 4.6: An algorithm to divide a given size budget among subexpressions 28

I now describe the main hybrid enumeration algorithm, which is listed in Figure 4.5. The

HEnum function accepts a SyGuS problem 〈fX→Y |ϕ, E〉 T, a set E1...p of component-based

grammars such that E1 ⊂ · · · ⊂ Ep ⊆ E , a well order /, and an upper bound q ≥ 0 on the

size of expressions to enumerate. In lines 4 – 8, I first enumerate all values and cache them

as expressions of size one. In general C[j, k][τ] contains expressions of type τ and size k

from Ej \ Ej−1. In line 9 I sort (grammar, size) pairs in some total order consistent with

/. Finally, in lines 10 – 20, I iterate over each pair (Ej, k) and each operator from E1...j

and invoke the Divide procedure (Figure 4.6) to carefully choose the operator’s argument

subexpressions ensuring (a) correctness — their sizes sum up to k − 1, (b) efficiency —

expressions are enumerated at most once, and (c) completeness — all expressions of size k in

Ej are enumerated.

The Divide algorithm generates a set of locations for selecting arguments to an operator.

Each location is a pair (x, y) indicating that any expression from C[x, y][τ] can be an argument,

where τ is the argument type required by the operator. Divide accepts an arity a for an

28 I use � as the cons operator for sequences, e.g.x � 〈y, z〉 = 〈x, y, z〉.

115

operator o, a size budget q, the index l of the least-expressive grammar containing o, the index

j of the least-expressive grammar that should contain the constructed expressions of the form

o(e1, . . . , ea), and an accumulator α that stores the list of argument locations. In lines 7 – 9,

the size budget is recursively divided among a− 1 locations. In each recursive step, the upper

bound (q− a+ 1) on v ensures that I have a size budget of at least q− (q− a+ 1) = a− 1 for

the remaining a− 1 locations. This results in a call tree such that the accumulator α at each

leaf node contains the locations from which to select the last a− 1 arguments, and we are left

with some size budget q ≥ 1 for the first argument e1. Finally in lines 4 – 5, I carefully select

the locations for e1 to ensure that o(e1, . . . , ea) has not been synthesized before — either

o ∈ components(Ej) or at least one argument belongs to Ej \ Ej−1.

I conclude this section by stating some desirable properties satisfied by HEnum. I first

define the following notion of jk-Uniqueness and prove a few helper lemmas, then finally

present and prove some properties of HEnum.

Definition 4.10 (jk-Uniqueness). Given grammars E1 ⊆ · · · ⊆ Ep, we say that an expression

e of size k is jk-unique with respect to E1...p if it is contained in Ej but not in E(j−1). We

define U [E1...p]kj as the maximal such set of expressions, i.e.

U [E1...p]kj
def
=
{
e ∈ Ej | size(e) = k ∧ e 6∈ E(j−1)

}
Lemma 4.9. Given grammars E1 ⊆ · · · ⊆ Ep, for any distinct pairs (j, k) and (j′, k′) the sets

U [E1...p]kj and U [E1...p]k
′

j′ must be disjoint, i.e.

∀ j, k, j′, k′ : j 6= j′ ∨ k 6= k′ =⇒ U [E1...p]kj ∩ U [E1...p]k
′

j′ = {}

Proof. When k 6= k′, it is straightforward to show that U [E1...p]kj ∩ U [E1...p]k
′

j′ = {}, since an

expression cannot be of size k and k′ at the same time.

116

We now prove the claim for the case when j 6= j′ by contradiction. Suppose there exists an

expression e ∈ U [E1...p]kj ∩ U [E1...p]kj′ . Without loss of generality, assume j > j′, and therefore

Ej ⊇ Ej′ . But then, by Definition 4.10, it must be the case that e 6∈ Ej′ and thus e 6∈ U [E1...p]kj′ .

Therefore, our assumption that U [E1...p]kj ∩ U [E1...p]kj′ 6= {} must be false.

Lemma 4.10. Let E1 ⊆ · · · ⊆ Ep be p component-based grammars. Then, for any expression

o(e1, . . . , ea) ∈ U [E1...p]kj , if the operator o belongs to operators(Eq) such that q < j, at least

one argument must belong to Ej but not E(j−1), i.e.

o ∈ operators(Eq) ∧ q < j =⇒ ∃ e ∈ e1 . . . a : e ∈ Ej ∧ e 6∈ E(j−1)

Proof. Consider an arbitrary expression e∗ = o(e1, . . . , ea) ∈ U [E1...p]kj such that o ∈ operators(Eq) ∧

q < j. Suppose
[
∀ e ∈ e1 . . . a : e 6∈ Ej ∨ e ∈ E(j−1)

]
. Then, for any argument subexpression e,

we have the following three possibilities:

7 e 6∈ Ej ∧ e ∈ E(j−1) is impossible since E(j−1) ⊆ Ej.

7 e 6∈ Ej ∧ e 6∈ E(j−1) is also impossible, by Definition 4.8, due to the closure property of

component-based grammars.

7 e ∈ Ej ∧ e ∈ E(j−1) must be false for at least one argument subexpression. Other-

wise, since o ∈ operators(E(j−1)) and E(j−1) is closed under operator application by

Definition 4.8, e∗ ∈ E(j−1) must be true. However, by Definition 4.10, we have that

e∗ ∈ U [E1...p]kj =⇒ e∗ 6∈ E(j−1).

Therefore, our assumption
[
∀ e ∈ e1 . . . a : e 6∈ Ej ∨ e ∈ E(j−1)

]
must be false.

Lemma 4.11. Let E0 = {} and E1 ⊆ · · · ⊆ Ep be p component-based grammars. Then, for any

l ≥ 1 and any operator o ∈ operators(El) \ operators(El−1) of arity a, Divide(a, k − 1, l, j, 〈〉)

117

generates the following set L of all possible distinct locations for selecting the arguments for o

such that o(e1, . . . , ea) ∈ U [E1...p]kj :

L =
{〈

(j1, k1), . . . , (ja, ka)
〉 | o(e1, . . . , ea) ∈ U [E1...p]kj

∧ ∀ 1 ≤ i ≤ a : ei ∈ U [E1...p]kiji
}

Proof. In lines 7 – 9 of Figure 4.6, the top-level Divide(a, k − 1, l, j, 〈〉) call first recursively

creates a call tree of height a− 1 such that the accumulator α at each leaf node contains the

locations for selecting the last a− 1 arguments from. Since u in line 7 ranges over {1, . . . , j}

and v in line 8 ranges over {1, . . . , (k − 2)}, the call tree must be exhaustive by construction.

Concretely, the values of α at the the leaf nodes must capture every possible sequence of

a− 1 locations,
〈
(j1, k1), . . . , (j(a−1), k(a−1))

〉
, such that k1 + · · ·+ k(a−1) ≤ k − 2.

Finally at the leaf nodes of the call tree, lines 4 – 5 are triggered to select locations

for the first argument. The naïve approach of simply assigning the remaining size to each

grammar in E1...j would be exhaustive, but may lead to enumerating other expressions

o(e1, . . . , ea) 6∈ U [E1...p]kj when l < j. Therefore, we check if l < j and no location (x, y) in α

satisfies x = j, in which case we assign the remaining size to only Ej in line 5. Lemma 4.10

shows that this check is sufficient to guarantee that we only enumerate expressions in

U [E1...p]kj .

Theorem 4.12 (HEnum is Complete). Given a SyGuS problem S = 〈fX→Y |ϕ, E〉 T, let E1...p

be component-based grammars over theory T such that E1 ⊂ · · · ⊂ Ep = E, / be a well order

on E1...p×N, and q ≥ 0 be an upper bound on size of expressions. Then, HEnum(S, E1...p,/, q)

will eventually find a satisfying expression if there exists one with size ≤ q.

Proof. First, we observe that every expression e ∈ E must belong to some maximal set of

jk-unique expressions with respect to E1...p:

∀ e ∈ E : ∃ j ∈ {1, . . . , p} : ∃ k ∈ {1, . . . , q} : e ∈ U [E1...p]kj

118

We show that C[j, k] in HEnum (Figure 4.5) stores U [E1...p]kj , into various C[j, k][τ] lists

based on the expression type τ . Since HEnum computes C[j, k] for each j ∈ {1, . . . , p} and

each k ∈ {1, . . . , q}, it must enumerate every expression in E with size at most q, and thus

eventually find e.

The base cases C[i, 1] = U [E1...p]1i are straightforward. The inductive case follows from

Lemma 4.11. For each (j, k) ∈ {1, . . . , p} × {1, . . . , q} and each operator in E1...j, we invoke

Divide (Figure 4.6) to generate all possible locations for the operator’s arguments such that

the final expression is contained in U [E1...p]kj . Lines 16 – 20 in HEnum then populate C[j, k]

as U [E1...p]kj by applying the operator to subexpressions of appropriate types drawn from these

locations.

Theorem 4.13 (HEnum is Efficient). Given a SyGuS problem S = 〈fX→Y |ϕ, E〉 T, let E1...p be

component-based grammars over theory T such that E1 ⊂ · · · ⊂ Ep ⊆ E, / be a well order on

E1...p × N, and q ≥ 0 be an upper bound on size of expressions. Then, HEnum(S, E1...p,/, q)

will enumerate each distinct expression at most once.

Proof. As shown in the proof of Theorem 4.12, C[j, k] in HEnum (Figure 4.5) stores U [E1...p]kj .

Then, by Lemma 4.9, we immediately have that all pairs C[j, k] and C[j′, k′] of synthesized

expressions are disjoint when j 6= j′ or k 6= k′.

Furthermore, although each C[j, k] is implemented as a list, we show that any two

expressions within any C[j, k] list must be syntactically distinct. The base cases C[i, 1] are

straightforward. For the inductive case, observe that if each list C[j1, k1], . . . , C[ja, ka] only

contains syntactically distinct expressions, then all tuples within C[j1, k1]×· · ·×C[ja, ka] must

also be distinct. Thus, if an operator o with arity a is applied to subexpressions drawn from

the cross product, i.e. 〈e1, . . . , ea〉 ∈ C[j1, k1]× · · · × C[ja, ka], then all resulting expressions

of the form o(e1, . . . , ea) must be syntactically distinct. Thus, by structural induction, we

have that in any list C[j, k] all contained expressions are syntactically distinct.

119

(a) LoopInvGen [PSM16] (b) CVC4 [RDK15, BCD11]

Solid blue curves (x) show original
failure counts.

Dashed orange curves (•) show
failure counts with PLearn.

Timeout = 30min. (wall-clock)

(c) Stoch [ABJ13, III F] (d) SketchAC [JQS15, Sol13] (e) EUSolver [ARU17]

Figure 4.7: The number of failures on increasing grammar expressiveness, for state-of-the-art SyGuS

tools, with and without the PLearnframework (Figure 4.4)

4.4 Experimental Evaluation

In this section I empirically evaluate PLearn and HEnum. My evaluation uses a set of

180 synthesis benchmarks,29 consisting of all 127 official benchmarks from the Inv track

of 2018 SyGuS competition [AF19] augmented with benchmarks from the 2018 Software

Verification competition (SV-Comp) [Bey17] and challenging verification problems proposed

in prior work [BDM18, BMS05]. All these synthesis tasks are defined over integer and Boolean

values, and I evaluate them with the six grammars described in Figure 4.1. I have omitted

benchmarks from other tracks of the SyGuS competition as they either require us to construct

E1...p (Section 4.3) by hand or lack verification oracles. All experiments presented in this

section were performed on an 8-core Intel® Xeon® E5 machine clocked at 2.30GHz with

32GB memory running Ubuntu® 18.04.

29 All benchmarks are available at https://github.com/SaswatPadhi/LoopInvGen.

120

https://github.com/SaswatPadhi/LoopInvGen

4.4.1 Robustness of PLearn

For five state-of-the-art SyGuS solvers – (a) LoopInvGen [PSM16], (b) CVC4 [RDK15,

BCD11], (c) Stoch [ABJ13, III F], (d) SketchAC [JQS15, Sol13], and (e) EUSolver [ARU17]

– I have compared the performance across various grammars, with and without the PLearn

framework (Figure 4.4). In this framework, to solve a SyGuS problem with the pth expres-

siveness level from my six integer-arithmetic grammars (see Figure 4.1), I run p independent

parallel instances of a SyGuS tool, each with one of the first p grammars. For example, to

solve a SyGuS problem with the Polyhedra grammar, I run four instances of a solver with the

Equalities, Intervals, Octagons, and Polyhedra grammars. I evaluate these runs for each tool,

for each of the 180 benchmarks and for each of the six expressiveness levels.

Figure 4.7 summarizes my findings. Without PLearn the number of failures initially

decreases and then increases across all solvers, as grammar expressiveness increases. However,

with PLearn the tools incur fewer failures at a given level of expressiveness, and there

is a trend of decreased failures with increased expressiveness. Thus, I have demonstrated

that PLearn is an effective measure to mitigate overfitting in SyGuS tools and significantly

improve their performance.

4.4.2 Performance of Hybrid Enumeration

To evaluate the performance of hybrid enumeration, I augment an existing synthesis en-

gine with HEnum(Figure 4.5). I modify my LoopInvGen tool [PSM16], which is the

best-performing SyGuS synthesizer from Figure 4.7. Internally, LoopInvGen leverages

Escher [AGK13], an enumerative synthesizer, which I replace with HEnum. I make

no other changes to LoopInvGen. I evaluate the performance and resource usage of

this solver, HE+LoopInvGen, relative to the original LoopInvGen with and without

PLearn(Figure 4.4).

121

(a) Failures on increasing grammar expressiveness

Grammar M
[τ [P]
τ [H]

]
M
[τ [H]
τ [L]

]
Equalities 1.00 1.00

Intervals 1.91 1.04

Octagons 2.84 1.03

Polyhedra 3.72 1.01

Polynomials 4.62 1.00

Peano 5.49 0.97

(b) Median(M) overhead

Figure 4.8: L -LoopInvGen, H -HE+LoopInvGen, P -PLearn(LoopInvGen). H is not only

significantly robust against increasing grammar expressiveness, but it also has a smaller total-time cost

(τ) than P and a negligible overhead over L.

Performance. In Figure 4.8(a), I show the number of failures across my six grammars for

LoopInvGen, HE+LoopInvGen and LoopInvGen with PLearn, over my 180 bench-

marks. HE+LoopInvGen has a significantly lower failure rate than LoopInvGen, and the

number of failures decreases with grammar expressiveness. Thus, hybrid enumeration is a

good proxy for PLearn.

Resource Usage. To estimate how computationally expensive each solver is, I compare

their total-time cost (τ). Since LoopInvGen and HE+LoopInvGen are single-threaded,

for them I simply use the wall-clock time for synthesis as the total-time cost. However, for

PLearn with p parallel instances of LoopInvGen, I consider the total-time cost as p times

the wall-clock time for synthesis.

In Figure 4.8(b), I show the median overhead (ratio of τ) incurred by PLearn over

HE+LoopInvGen and HE+LoopInvGen over LoopInvGen, at various expressiveness

levels. As I move to grammars of increasing expressiveness, the total-time cost of PLearn

increases significantly, while the total-time cost of HE+LoopInvGen essentially matches

that of LoopInvGen.

122

4.4.3 Competition Performance

Finally, I evaluate the performance of HE+LoopInvGen on the benchmarks from the Inv

track of the 2018 SyGuS competition [AF19], against the official winning solver, which I

denote LIG [PSM17] — a version of LoopInvGen [PSM16] that has been extensively tuned

for this track. In the competition, there are some invariant-synthesis problems where the

postcondition itself is a satisfying expression. LIG starts with the postcondition as the

first candidate and is extremely fast on such programs. For a fair comparison, I added this

heuristic to HE+LoopInvGen as well. No other change was made to HE+LoopInvGen.

LoopInvGen solves 115 benchmarks in a total of 2191 seconds whereas HE+LoopInvGen

solves 117 benchmarks in 429 seconds, for a mean speedup of over 5×. Moreover, no entrants

to the competition could solve [AF19] the two additional benchmarks (gcnr_tacas08 and

fib_20) that HE+LoopInvGen solves.

4.5 Related Work

The most closely related work investigates overfitting for verification tools [SNA14]. My

work differs from theirs in several respects. First, I address the problem of overfitting in

CEGIS-based synthesis. Second, I formally define overfitting and prove that all synthesizers

must suffer from it, whereas they only observe overfitting empirically. Third, while they use

cross-validation to combat overfitting in tuning a specific hyperparameter of a verifier, my

approach is to search for solutions at different expressiveness levels.

The general problem of efficiently searching a large space of programs for synthesis has

been explored in prior work. Lee et al. [LHA18] use a probabilistic model, learned from

known solutions to synthesis problems, to enumerate programs in order of their likelihood.

Other approaches employ type-based pruning of large search spaces [PKS16, OZ15]. These

techniques are orthogonal to, and may be combined with, my approach of exploring grammar

subsets.

123

The presented results are widely applicable to existing SyGuS tools, but some tools fall

outside my purview. For instance, in programming-by-example (PBE) systems [GPS17, §7],

the specification consists of a set of input-output examples. Since any program that meets

the given examples is a valid satisfying expression, my notion of overfitting does not apply to

such tools. However in a recent work, Inala et al. [IS17] show that incrementally increasing

expressiveness can also aid PBE systems. They report that searching within increasingly

expressive grammar subsets requires significantly fewer examples to find expressions that

generalize better over unseen data. Other instances where the synthesizers can have a free

lunch, i.e. always generate a solution with a small number of counterexamples, include

systems that use grammars with limited expressiveness [JGS10, SGH13a, GT12].

This work falls in the category of formal results about SyGuS. In one such result, Jha

et al. [JS17] analyze the effects of different kinds of counterexamples and of providing bounded

versus unbounded memory to learners. Notably, they do not consider variations in “concept

classes” or “program templates,” which are precisely the focus of my study. Therefore, my

results are complementary: I treat counterexamples and learners as opaque and instead focus

on grammars.

124

CHAPTER 5

Conclusion

I have presented a number of techniques that I have developed to automatically infer likely

program invariants using information from concrete program executions, such as examples,

test cases, execution traces etc. The key enabling factor was a convergence of data-driven

insights from machine learning community and symbolic reasoning from the formal methods

community — a common theme across my thesis work. I show that the proposed techniques

are not only faster [AF19] than the state-of-the-art techniques, but also result in a less

onerous, more expressive workflow. Ultimately, these techniques are meant to aid end users

in formulating the specifications and inductive invariants that are required to formally reason

about correctness of their programs.

Beyond the techniques presented in this thesis, the proposed data-driven invariant learning

strategy has also been shown to be useful for learning invariants in other domains. In a recent

work, I have also explored automatically learning representation invariants [MPW20] for

verifying data structure implementations. Menendez et al. have also utilized this approach

for verifying compiler optimizations [MN17]. The FlashProfile [PJP18] technique has also

been deployed by Microsoft as part of the widely used PROSE [Cor17e] SDK.

There are still a number challenges that need to be addressed before program verification

is likely to see mass adoption. One of the most important ones is developing effective yet

intuitive user-interaction models for verification tools. The techniques presented in this thesis

work with concrete program states or input-output examples. However, providing concrete

examples of internal program states can be challenging for complex programs. Alternative

125

interaction models, such as proactively requesting users to choose between discriminating

examples, would be worthwhile to explore.

126

REFERENCES

[ABJ13] Rajeev Alur, Rastislav Bodik, Garvit Juniwal, Milo MK Martin, Mukund
Raghothaman, Sanjit A Seshia, Rishabh Singh, Armando Solar-Lezama, Em-
ina Torlak, and Abhishek Udupa. “Syntax-guided synthesis.” In Formal Methods
in Computer-Aided Design (FMCAD), 2013, pp. 1–8. IEEE, 2013.

[AF19] Rajeev Alur, , Dana Fisman, Saswat Padhi, Rishabh Singh, and Abhishek Udupa.
“SyGuS-Comp 2018: Results and Analysis.” arXiv preprint arXiv:1904.07146,
2019.

[AGK13] Aws Albarghouthi, Sumit Gulwani, and Zachary Kincaid. “Recursive program
synthesis.” In International Conference on Computer Aided Verification, pp.
934–950. Springer, 2013.

[AGN15] Ziawasch Abedjan, Lukasz Golab, and Felix Naumann. “Profiling relational data:
a survey.” The VLDB Journal, 24(4):557–581, 2015.

[AMS19] Angello Astorga, P Madhusudan, Shambwaditya Saha, Shiyu Wang, and Tao
Xie. “Learning stateful preconditions modulo a test generator.” In Proceedings
of the 40th ACM SIGPLAN Conference on Programming Language Design and
Implementation, pp. 775–787, 2019.

[Ang87] Dana Angluin. “Learning regular sets from queries and counterexamples.” Infor-
mation and computation, 75(2):87–106, 1987.

[ARU17] Rajeev Alur, Arjun Radhakrishna, and Abhishek Udupa. “Scaling enumerative
program synthesis via divide and conquer.” In International Conference on Tools
and Algorithms for the Construction and Analysis of Systems, pp. 319–336. Springer,
2017.

[AS07] David Arthur and Vassilvitskii Sergei. “K-means++: The Advantages of Careful
Seeding.” In 18th annual ACM-SIAM symposium on Discrete algorithms (SODA),
New Orleans, Louisiana, pp. 1027–1035, 2007.

[ASF18] Rajeev Alur, Rishabh Singh, Dana Fisman, and Armando Solar-Lezama. “Search-
based program synthesis.” Communications of the ACM, 61(12):84–93, 2018.

[ASX18] Angello Astorga, Siwakorn Srisakaokul, Xusheng Xiao, and Tao Xie. “PreInfer:
Automatic inference of preconditions via symbolic analysis.” In 2018 48th Annual
IEEE/IFIP International Conference on Dependable Systems and Networks (DSN),
pp. 678–689. IEEE, 2018.

127

[BC13] Yves Bertot and Pierre Castéran. Interactive theorem proving and program de-
velopment: Coq’Art: the calculus of inductive constructions. Springer Science &
Business Media, 2013.

[BCD11] Clark Barrett, Christopher Conway, Morgan Deters, Liana Hadarean, Dejan
Jovanović, Tim King, Andrew Reynolds, and Cesare Tinelli. “Cvc4.” In Computer
aided verification, pp. 171–177. Springer, 2011.

[BCE20] Sidi Mohamed Beillahi, Gabriela Ciocarlie, Michael Emmi, and Constantin Enea.
“Behavioral simulation for smart contracts.” In Proceedings of the 41st ACM
SIGPLAN Conference on Programming Language Design and Implementation, pp.
470–486, 2020.

[BDD12] Alberto Bartoli, Giorgio Davanzo, Andrea De Lorenzo, Marco Mauri, Eric Medvet,
and Enrico Sorio. “Automatic generation of regular expressions from examples with
genetic programming.” In Proceedings of the 14th annual conference companion
on Genetic and evolutionary computation, pp. 1477–1478, 2012.

[BDM18] Dimitar Bounov, Anthony DeRossi, Massimiliano Menarini, William G Griswold,
and Sorin Lerner. “Inferring loop invariants through gamification.” In Proceedings
of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–13,
2018.

[Bey17] Dirk Beyer. “Software verification with validation of results.” In International
Conference on Tools and Algorithms for the Construction and Analysis of Systems,
pp. 331–349. Springer, 2017.

[BFM11] François Bobot, Jean-Christophe Filliâtre, Claude Marché, and Andrei Paskevich.
“Why3: Shepherd your herd of provers.” In Boogie 2011: First International
Workshop on Intermediate Verification Languages, pp. 53–64, 2011.

[BH14] Bernhard Beckert and Reiner Hahnle. “Reasoning and verification: State of the
art and current trends.” IEEE Intelligent Systems, 29(1):20–29, 2014.

[BHC15] Arka A Bhattacharya, Dezhi Hong, David Culler, Jorge Ortiz, Kamin Whitehouse,
and Eugene Wu. “Automated metadata construction to support portable build-
ing applications.” In Proceedings of the 2nd ACM International Conference on
Embedded Systems for Energy-Efficient Built Environments, pp. 3–12, 2015.

[Bis06] Christopher M Bishop. Pattern recognition and machine learning. springer, 2006.

[BLS04] Mike Barnett, K Rustan M Leino, and Wolfram Schulte. “The Spec# programming
system: An overview.” In International Workshop on Construction and Analysis
of Safe, Secure, and Interoperable Smart Devices, pp. 49–69. Springer, 2004.

128

[BMS05] Aaron R Bradley, Zohar Manna, and Henny B Sipma. “The polyranking principle.”
In International Colloquium on Automata, Languages, and Programming, pp.
1349–1361. Springer, 2005.

[Bre01] Leo Breiman. “Random forests.” Machine learning, 45(1):5–32, 2001.

[BRL19] Haniel Barbosa, Andrew Reynolds, Daniel Larraz, and Cesare Tinelli. “Extending
enumerative function synthesis via SMT-driven classification.” In 2019 Formal
Methods in Computer Aided Design (FMCAD), pp. 212–220. IEEE, 2019.

[BSA17] Osbert Bastani, Rahul Sharma, Alex Aiken, and Percy Liang. “Synthesizing
program input grammars.” ACM SIGPLAN Notices, 52(6):95–110, 2017.

[BST10] Clark Barrett, Aaron Stump, Cesare Tinelli, et al. “The smt-lib standard: Version
2.0.” In Proceedings of the 8th international workshop on satisfiability modulo
theories (Edinburgh, England), volume 13, p. 14, 2010.

[CAB86] RL Constable, SF Allen, HM Bromley, WR Cleaveland, JF Cremer, RW Harper,
DJ Howe, TB Knoblock, NP Mendler, P Panangaden, et al. Implementing
mathematics. Prentice-Hall, 1986.

[CBR01] Edmund Clarke, Armin Biere, Richard Raimi, and Yunshan Zhu. “Bounded model
checking using satisfiability solving.” Formal methods in system design, 19(1):7–34,
2001.

[CC77a] Patrick Cousot and Radhia Cousot. “Abstract interpretation: a unified lattice
model for static analysis of programs by construction or approximation of fixpoints.”
In Proceedings of the 4th ACM SIGACT-SIGPLAN symposium on Principles of
programming languages, pp. 238–252. ACM, 1977.

[CC77b] Patrick Cousot and Radhia Cousot. “Static determination of dynamic properties of
generalized type unions.” ACM SIGOPS Operating Systems Review, 11(2):77–94,
1977.

[CCF13] Patrick Cousot, Radhia Cousot, Manuel Fähndrich, and Francesco Logozzo. “Au-
tomatic inference of necessary preconditions.” In International Workshop on
Verification, Model Checking, and Abstract Interpretation, pp. 128–148. Springer,
2013.

[CDE08] Cristian Cadar, Daniel Dunbar, Dawson R Engler, et al. “KLEE: Unassisted and
Automatic Generation of High-Coverage Tests for Complex Systems Programs.”
In OSDI, volume 8, pp. 209–224, 2008.

[CDO11] Cristiano Calcagno, Dino Distefano, Peter W O’hearn, and Hongseok Yang. “Com-
positional shape analysis by means of bi-abduction.” Journal of the ACM (JACM),
58(6):1–66, 2011.

129

[CE82] Edmund Clarke and E Emerson. “Design and synthesis of synchronization skeletons
using branching time temporal logic.” Logics of programs, pp. 52–71, 1982.

[CFS09] Satish Chandra, Stephen J Fink, and Manu Sridharan. “Snugglebug: a powerful
approach to weakest preconditions.” ACM Sigplan Notices, 44(6):363–374, 2009.

[CGH12] Graham Cormode, Minos Garofalakis, Peter J Haas, and Chris Jermaine. “Synopses
for massive data: Samples, histograms, wavelets, sketches.” Foundations and
Trends in Databases, 4(1–3):1–294, 2012.

[CGJ00] Edmund Clarke, Orna Grumberg, Somesh Jha, Yuan Lu, and Helmut Veith.
“Counterexample-guided abstraction refinement.” In International Conference on
Computer Aided Verification, pp. 154–169. Springer, 2000.

[CGP99] Edmund M Clarke, Orna Grumberg, and Doron Peled. Model checking. MIT press,
1999.

[CH78] Patrick Cousot and Nicolas Halbwachs. “Automatic discovery of linear restraints
among variables of a program.” In Proceedings of the 5th ACM SIGACT-SIGPLAN
symposium on Principles of programming languages, pp. 84–96. ACM, 1978.

[CH84] Thierry Coquand, Gérard Huet, et al. “The Coq proof assistant.”, 1984.

[CH93] Allen Cypher and Daniel Conrad Halbert. Watch what I do: programming by
demonstration. MIT press, 1993.

[Cor17a] Ataccama Corp. “Ataccama One Platform.”, 2017. https://www.ataccama.com/.

[Cor17b] Microsoft Corp. “Azure Machine Learning By-Example Data Transform.”, 2017.
https://www.youtube.com/watch?v=9KG0Sc2B2KI.

[Cor17c] Microsoft Corp. “Data Transformations "By Exam-
ple" in the Azure ML Workbench.”, 2017. https://
blogs.technet.microsoft.com/machinelearning/2017/09/25/
by-example-transformations-in-the-azure-machine-learning-workbench/.

[Cor17d] Microsoft Corp. “Microsoft SQL Server Data Tools (SSDT).”, 2017.

[Cor17e] Microsoft Corp. “Program Synthesis using Examples SDK.”, 2017. https://
microsoft.github.io/prose/.

[CSM12] Alvin Cheung, Armando Solar-Lezama, and Samuel Madden. “Using program syn-
thesis for social recommendations.” In Proceedings of the 21st ACM international
conference on Information and knowledge management, pp. 1732–1736, 2012.

130

https://www.ataccama.com/
https://www.youtube.com/watch?v=9KG0Sc2B2KI
https://blogs.technet.microsoft.com/machinelearning/2017/09/25/by-example-transformations-in-the-azure-machine-learning-workbench/
https://blogs.technet.microsoft.com/machinelearning/2017/09/25/by-example-transformations-in-the-azure-machine-learning-workbench/
https://blogs.technet.microsoft.com/machinelearning/2017/09/25/by-example-transformations-in-the-azure-machine-learning-workbench/
https://microsoft.github.io/prose/
https://microsoft.github.io/prose/

[CSS03] Michael A Colón, Sriram Sankaranarayanan, and Henny B Sipma. “Linear invariant
generation using non-linear constraint solving.” In International Conference on
Computer Aided Verification, pp. 420–432. Springer, 2003.

[CV95] Corinna Cortes and Vladimir Vapnik. “Support-vector networks.” Machine
learning, 20(3):273–297, 1995.

[DB08] Leonardo De Moura and Nikolaj Bjørner. “Z3: An efficient SMT solver.” In
International conference on Tools and Algorithms for the Construction and Analysis
of Systems, pp. 337–340. Springer, 2008.

[DD13] Isil Dillig and Thomas Dillig. “Explain: A tool for performing abductive inference.”
In International Conference on Computer Aided Verification, pp. 684–689. Springer,
2013.

[DDD76] Edsger Wybe Dijkstra, Edsger Wybe Dijkstra, Edsger Wybe Dijkstra, Etats-Unis
Informaticien, and Edsger Wybe Dijkstra. A discipline of programming, volume 1.
prentice-hall Englewood Cliffs, 1976.

[DDH72] Ole-Johan Dahl, Edsger Wybe Dijkstra, and Charles Antony Richard Hoare.
Structured programming. Academic Press Ltd., 1972.

[DDL13] Isil Dillig, Thomas Dillig, Boyang Li, and Ken McMillan. “Inductive invariant
generation via abductive inference.” In Acm Sigplan Notices, volume 48, pp.
443–456. ACM, 2013.

[Die00] Thomas G Dietterich. “Ensemble methods in machine learning.” In International
workshop on multiple classifier systems, pp. 1–15. Springer, 2000.

[Dij75] Edsger W Dijkstra. “Guarded commands, nondeterminacy and formal derivation
of programs.” Communications of the ACM, 18(8):453–457, 1975.

[DKA14] Zakir Durumeric, James Kasten, David Adrian, J Alex Halderman, Michael Bailey,
Frank Li, Nicolas Weaver, Johanna Amann, Jethro Beekman, Mathias Payer, et al.
“The matter of heartbleed.” In Proceedings of the 2014 Conference on Internet
Measurement Conference, pp. 475–488. ACM, 2014.

[DKW08] Vijay D’silva, Daniel Kroening, and Georg Weissenbacher. “A survey of automated
techniques for formal software verification.” IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, 27(7):1165–1178, 2008.

[DMS09] Markus Dahlweid, Michal Moskal, Thomas Santen, Stephan Tobies, and Wolfram
Schulte. “VCC: Contract-based modular verification of concurrent C.” In Software
Engineering-Companion Volume, 2009. ICSE-Companion 2009. 31st International
Conference on, pp. 429–430. IEEE, 2009.

131

[DS13] Xin Luna Dong and Divesh Srivastava. “Big data integration.” In Data Engineering
(ICDE), 2013 IEEE 29th International Conference on, pp. 1245–1248. IEEE, 2013.

[EG17] Kevin Ellis and Sumit Gulwani. “Learning to Learn Programs from Examples:
Going Beyond Program Structure.” In IJCAI, pp. 1638–1645, 2017.

[END18] P Ezudheen, Daniel Neider, Deepak D’Souza, Pranav Garg, and P Madhusudan.
“Horn-ICE learning for synthesizing invariants and contracts.” Proceedings of the
ACM on Programming Languages, 2(OOPSLA):1–25, 2018.

[EPG07] Michael D Ernst, Jeff H Perkins, Philip J Guo, Stephen McCamant, Carlos Pacheco,
Matthew S Tschantz, and Chen Xiao. “The Daikon system for dynamic detection
of likely invariants.” Science of Computer Programming, 69(1):35–45, 2007.

[FCD15] John K Feser, Swarat Chaudhuri, and Isil Dillig. “Synthesizing data structure
transformations from input-output examples.” ACM SIGPLAN Notices, 50(6):229–
239, 2015.

[FL10] Manuel Fähndrich and Francesco Logozzo. “Static contract checking with abstract
interpretation.” In International Conference on Formal Verification of Object-
Oriented Software, pp. 10–30. Springer, 2010.

[Flo67] Robert W Floyd. “Assigning meanings to programs.” Mathematical aspects of
computer science, 19(19-32):1, 1967.

[FMV17] Yu Feng, Ruben Martins, Jacob Van Geffen, Isil Dillig, and Swarat Chaudhuri.
“Component-based synthesis of table consolidation and transformation tasks from
examples.” ACM SIGPLAN Notices, 52(6):422–436, 2017.

[FR94] Gilberto Filé and Francesco Ranzato. “Improving abstract interpretations by
systematic lifting to the powerset.” In Proceedings of the 1994 International
Symposium on Logic programming, pp. 655–669, 1994.

[FWZ08] Kathleen Fisher, David Walker, and Kenny Q Zhu. “LearnPADS: automatic
tool generation from ad hoc data.” In Proceedings of the 2008 ACM SIGMOD
international conference on Management of data, pp. 1299–1302. ACM, 2008.

[GDV15] Timon Gehr, Dimitar Dimitrov, and Martin Vechev. “Learning commutativity
specifications.” In International Conference on Computer Aided Verification, pp.
307–323. Springer, 2015.

[GF13] Wael H Gomaa and Aly A Fahmy. “A survey of text similarity approaches.”
International Journal of Computer Applications, 68(13), 2013.

[GFM14] Juan Pablo Galeotti, Carlo A Furia, Eva May, Gordon Fraser, and Andreas Zeller.
“Dynamate: Dynamically inferring loop invariants for automatic full functional
verification.” In Haifa Verification Conference, pp. 48–53. Springer, 2014.

132

[Gia98] Roberto Giacobazzi. “Abductive analysis of modular logic programs.” Journal of
Logic and Computation, 8(4):457–483, 1998.

[GIB12] Khalil Ghorbal, Franjo Ivančić, Gogul Balakrishnan, Naoto Maeda, and Aarti
Gupta. “Donut domains: Efficient non-convex domains for abstract interpreta-
tion.” In International Workshop on Verification, Model Checking, and Abstract
Interpretation, pp. 235–250. Springer, 2012.

[GJ07] Sumit Gulwani and Nebojsa Jojic. “Program verification as probabilistic inference.”
ACM SIGPLAN Notices, 42(1):277–289, 2007.

[GKP94] Ronald L Graham, Donald E Knuth, and Oren Patashnik. Concrete Math. A
Foundation for Computer Science. Addison-Wesley, Reading, MA, 1994.

[GKS05] Patrice Godefroid, Nils Klarlund, and Koushik Sen. “DART: directed automated
random testing.” In ACM Sigplan Notices, volume 40, pp. 213–223. ACM, 2005.

[GLM14] Pranav Garg, Christof Löding, P Madhusudan, and Daniel Neider. “ICE: A robust
framework for learning invariants.” In International Conference on Computer
Aided Verification, pp. 69–87. Springer, 2014.

[GMR09] Ashutosh Gupta, Rupak Majumdar, and Andrey Rybalchenko. “From tests to
proofs.” In International Conference on Tools and Algorithms for the Construction
and Analysis of Systems, pp. 262–276. Springer, 2009.

[GNM16] Pranav Garg, Daniel Neider, Parthasarathy Madhusudan, and Dan Roth. “Learn-
ing invariants using decision trees and implication counterexamples.” In ACM
SIGPLAN Notices, volume 51, pp. 499–512. ACM, 2016.

[Gor88] Michael JC Gordon. “HOL: A proof generating system for higher-order logic.” In
VLSI specification, Verification and Synthesis, pp. 73–128. Springer, 1988.

[GPS17] Sumit Gulwani, Oleksandr Polozov, Rishabh Singh, et al. “Program synthesis.”
Foundations and Trends® in Programming Languages, 4(1-2):1–119, 2017.

[GR07] Denis Gopan and Thomas Reps. “Guided static analysis.” In International Static
Analysis Symposium, pp. 349–365. Springer, 2007.

[GSV08] Sumit Gulwani, Saurabh Srivastava, and Ramarathnam Venkatesan. “Program
analysis as constraint solving.” ACM SIGPLAN Notices, 43(6):281–292, 2008.

[GT12] Patrice Godefroid and Ankur Taly. “Automated synthesis of symbolic instruction
encodings from I/O samples.” ACM SIGPLAN Notices, 47(6):441–452, 2012.

[Gul10] Sumit Gulwani. “Dimensions in program synthesis.” In Proceedings of the 12th
international ACM SIGPLAN symposium on Principles and practice of declarative
programming, pp. 13–24. ACM, 2010.

133

[Gul11] Sumit Gulwani. “Automating string processing in spreadsheets using input-output
examples.” In ACM SIGPLAN Notices, volume 46, pp. 317–330. ACM, 2011.

[Han14] Steve Hanneke et al. “Theory of disagreement-based active learning.” Foundations
and Trends® in Machine Learning, 7(2-3):131–309, 2014.

[HBV01] Maria Halkidi, Yannis Batistakis, and Michalis Vazirgiannis. “On clustering
validation techniques.” Journal of intelligent information systems, 17(2-3):107–
145, 2001.

[Hig10] Colin De la Higuera. Grammatical inference: learning automata and grammars.
Cambridge University Press, 2010.

[HNS95] Peter J Haas, Jeffrey F Naughton, S Seshadri, and Lynne Stokes. “Sampling-based
estimation of the number of distinct values of an attribute.” In VLDB, volume 95,
pp. 311–322, 1995.

[Hoa69] Charles Antony Richard Hoare. “An axiomatic basis for computer programming.”
Communications of the ACM, 12(10):576–580, 1969.

[HS02] Brent Hailpern and Padmanabhan Santhanam. “Software debugging, testing, and
verification.” IBM Systems Journal, 41(1):4–12, 2002.

[Huc04] Thomas Huckle. “Collection of Software Bugs.”, 2004.

[Huu13] Ralf Huuck. “Formal verification, engineering and business value.” arXiv preprint
arXiv:1301.0037, 2013.

[Inc10] Google Inc. “OpenRefine: A free, open source, powerful tool for working with
messy data.”, 2010. http://openrefine.org/.

[Inc14] Red Hat Inc. “Shellshock vulnerability.”, 2014.

[Inc15] Red Hat Inc. “Ghost vulnerability.”, 2015.

[Inc16] Red Hat Inc. “Badlock Security flaw in Samba - CVE-2016-2118.”, 2016.

[Ioa03] Yannis Ioannidis. “The history of histograms (abridged).” In Proceedings 2003
VLDB Conference, pp. 19–30. Elsevier, 2003.

[IS17] Jeevana Priya Inala and Rishabh Singh. “WebRelate: integrating web data with
spreadsheets using examples.” Proceedings of the ACM on Programming Languages,
2(POPL):1–28, 2017.

[Jac12] Daniel Jackson. Software Abstractions: logic, language, and analysis. MIT press,
2012.

134

http://openrefine.org/

[JGS10] Susmit Jha, Sumit Gulwani, Sanjit A Seshia, and Ashish Tiwari. “Oracle-guided
component-based program synthesis.” In Proceedings of the 32nd ACM/IEEE
International Conference on Software Engineering-Volume 1, pp. 215–224. ACM,
2010.

[JKW10] Yungbum Jung, Soonho Kong, Bow-Yaw Wang, and Kwangkeun Yi. “Deriving
invariants by algorithmic learning, decision procedures, and predicate abstrac-
tion.” In International Workshop on Verification, Model Checking, and Abstract
Interpretation, pp. 180–196. Springer, 2010.

[JMF99] Anil K Jain, M Narasimha Murty, and Patrick J Flynn. “Data clustering: a
review.” ACM computing surveys (CSUR), 31(3):264–323, 1999.

[JQS15] Jinseong Jeon, Xiaokang Qiu, Armando Solar-Lezama, and Jeffrey S Foster. “Adap-
tive concretization for parallel program synthesis.” In International Conference on
Computer Aided Verification, pp. 377–394. Springer, 2015.

[JS17] Susmit Jha and Sanjit A Seshia. “A theory of formal synthesis via inductive
learning.” Acta Informatica, 54(7):693–726, 2017.

[JTL12] Dongseok Jang, Zachary Tatlock, and Sorin Lerner. “Establishing browser security
guarantees through formal shim verification.” In Proceedings of the 21st USENIX
conference on Security symposium, pp. 8–8. USENIX Association, 2012.

[KEH09] Gerwin Klein, Kevin Elphinstone, Gernot Heiser, June Andronick, David Cock,
Philip Derrin, Dhammika Elkaduwe, Kai Engelhardt, Rafal Kolanski, Michael
Norrish, et al. “seL4: Formal verification of an OS kernel.” In Proceedings of the
ACM SIGOPS 22nd symposium on Operating systems principles, pp. 207–220.
ACM, 2009.

[KG15] Dileep Kini and Sumit Gulwani. “Flashnormalize: Programming by examples
for text normalization.” In Twenty-Fourth International Joint Conference on
Artificial Intelligence, 2015.

[KJD10] Soonho Kong, Yungbum Jung, Cristina David, Bow-Yaw Wang, and Kwangkeun
Yi. “Automatically inferring quantified loop invariants by algorithmic learning
from simple templates.” In Asian Symposium on Programming Languages and
Systems, pp. 328–343. Springer, 2010.

[KKK13] Etienne Kneuss, Ivan Kuraj, Viktor Kuncak, and Philippe Suter. “Synthesis
modulo recursive functions.” Acm Sigplan Notices, 48(10):407–426, 2013.

[KLR10] Ming Kawaguchi, Shuvendu K Lahiri, and Henrique Rebelo. “Conditional equiva-
lence.” Microsoft, MSR-TR-2010-119, Tech. Rep, 2010.

135

[KM07] Panagiotis Karras and Nikos Mamoulis. “The Haar+ tree: a refined synopsis data
structure.” In 2007 IEEE 23rd International Conference on Data Engineering, pp.
436–445. IEEE, 2007.

[KMP10] Viktor Kuncak, Mikaël Mayer, Ruzica Piskac, and Philippe Suter. “Complete
functional synthesis.” ACM Sigplan Notices, 45(6):316–329, 2010.

[KPW15] Siddharth Krishna, Christian Puhrsch, and Thomas Wies. “Learning invariants
using decision trees.” arXiv preprint arXiv:1501.04725, 2015.

[KVV94] Michael J Kearns, Umesh Virkumar Vazirani, and Umesh Vazirani. An introduction
to computational learning theory. MIT press, 1994.

[LA04] Chris Lattner and Vikram Adve. “LLVM: A compilation framework for lifelong pro-
gram analysis & transformation.” In International Symposium on Code Generation
and Optimization, 2004. CGO 2004., pp. 75–86. IEEE, 2004.

[Lau09] Tessa Lau. “Why programming-by-demonstration systems fail: Lessons learned
for usable ai.” AI Magazine, 30(4):65–65, 2009.

[LCL17] Xuan-Bach D Le, Duc-Hiep Chu, David Lo, Claire Le Goues, and Willem Visser.
“S3: syntax-and semantic-guided repair synthesis via programming by examples.”
In Proceedings of the 2017 11th Joint Meeting on Foundations of Software Engi-
neering, pp. 593–604, 2017.

[Lei10] K Rustan M Leino. “Dafny: An automatic program verifier for functional correct-
ness.” In International Conference on Logic for Programming Artificial Intelligence
and Reasoning, pp. 348–370. Springer, 2010.

[Ler06] Xavier Leroy. “Formal certification of a compiler back-end or: programming a
compiler with a proof assistant.” In ACM SIGPLAN Notices, volume 41, pp.
42–54. ACM, 2006.

[Lev66] Vladimir I Levenshtein. “Binary codes capable of correcting deletions, insertions,
and reversals.” In Soviet physics doklady, volume 10, pp. 707–710, 1966.

[LG14] Vu Le and Sumit Gulwani. “FlashExtract: a framework for data extraction by
examples.” In Proceedings of the 35th ACM SIGPLAN Conference on Programming
Language Design and Implementation, pp. 542–553, 2014.

[LHA18] Woosuk Lee, Kihong Heo, Rajeev Alur, and Mayur Naik. “Accelerating search-
based program synthesis using learned probabilistic models.” ACM SIGPLAN
Notices, 53(4):436–449, 2018.

[Lie01] Henry Lieberman. Your wish is my command: Programming by example. Morgan
Kaufmann, 2001.

136

[LKR08] Yunyao Li, Rajasekar Krishnamurthy, Sriram Raghavan, Shivakumar
Vaithyanathan, and HV Jagadish. “Regular expression learning for informa-
tion extraction.” In Proceedings of the 2008 Conference on Empirical Methods in
Natural Language Processing, pp. 21–30, 2008.

[LMN15] Nuno P Lopes, David Menendez, Santosh Nagarakatte, and John Regehr. “Provably
correct peephole optimizations with alive.” In Proceedings of the 36th ACM
SIGPLAN Conference on Programming Language Design and Implementation, pp.
22–32, 2015.

[Loh14] Steve Lohr. “For big-data scientists,‘janitor work’is key hurdle to insights.” New
York Times, 17, 2014.

[LRT14] Tianyi Liang, Andrew Reynolds, Cesare Tinelli, Clark Barrett, and Morgan Deters.
“A DPLL (T) theory solver for a theory of strings and regular expressions.” In
International Conference on Computer Aided Verification, pp. 646–662. Springer,
2014.

[LSR07] Tal Lev-Ami, Mooly Sagiv, Thomas Reps, and Sumit Gulwani. “Backward analysis
for inferring quantified preconditions.” Tr-2007-12-01, Tel Aviv University, 2007.

[LSX17] Shang-Wei Lin, Jun Sun, Hao Xiao, Yang Liu, David Sanán, and Henri Hansen.
“FiB: Squeezing loop invariants by interpolation between forward/backward predi-
cate transformers.” In 2017 32nd IEEE/ACM International Conference on Auto-
mated Software Engineering (ASE), pp. 793–803. IEEE, 2017.

[LY02] Kalle Lyytinen and Youngjin Yoo. “Ubiquitous computing.” Communications of
the ACM, 45(12):63–96, 2002.

[Mac67] James MacQueen et al. “Some methods for classification and analysis of multivari-
ate observations.” In Proceedings of the fifth Berkeley symposium on mathematical
statistics and probability, volume 1, pp. 281–297. Oakland, CA, USA, 1967.

[May07] Arkady Maydanchik. Data quality assessment. Technics publications, 2007.

[Min06] Antoine Miné. “The octagon abstract domain.” Higher-order and symbolic compu-
tation, 19(1):31–100, 2006.

[MN17] David Menendez and Santosh Nagarakatte. “Alive-infer: Data-driven precondition
inference for peephole optimizations in llvm.” In Proceedings of the 38th ACM
SIGPLAN Conference on Programming Language Design and Implementation, pp.
49–63, 2017.

[Moy08] Yannick Moy. “Sufficient preconditions for modular assertion checking.” In Inter-
national Workshop on Verification, Model Checking, and Abstract Interpretation,
pp. 188–202. Springer, 2008.

137

[MPW20] Anders Miltner, Saswat Padhi, David Walker, and Todd Millstein. “Data-driven
inference of representation invariants.” In Proceedings of the 41st ACM SIGPLAN
Conference on Programming Language Design and Implementation, p. (To Appear).
ACM, 2020.

[MR05] Laurent Mauborgne and Xavier Rival. “Trace partitioning in abstract interpretation
based static analyzers.” In European Symposium on Programming, pp. 5–20.
Springer, 2005.

[MRS08] Christopher D Manning, Prabhakar Raghavan, and Hinrich Schütze. Introduction
to information retrieval. Cambridge university press, 2008.

[MSG09] Magnus O Myreen, Konrad Slind, and Michael JC Gordon. “Extensible proof-
producing compilation.” In International Conference on Compiler Construction,
pp. 2–16. Springer, 2009.

[MSG15] Mikaël Mayer, Gustavo Soares, Maxim Grechkin, Vu Le, Mark Marron, Oleksandr
Polozov, Rishabh Singh, Benjamin Zorn, and Sumit Gulwani. “User interaction
models for disambiguation in programming by example.” In Proceedings of the 28th
Annual ACM Symposium on User Interface Software & Technology, pp. 291–301.
ACM, 2015.

[MW79] Zohar Manna and Richard Waldinger. “Synthesis: dreams → programs.” IEEE
Transactions on Software Engineering, (4):294–328, 1979.

[MW80] Zohar Manna and Richard Waldinger. “A deductive approach to program synthesis.”
ACM Transactions on Programming Languages and Systems (TOPLAS), 2(1):90–
121, 1980.

[NE02a] Jeremy W Nimmer and Michael D Ernst. “Automatic generation of program
specifications.” ACM SIGSOFT Software Engineering Notes, 27(4):229–239, 2002.

[NE02b] Jeremy W Nimmer and Michael D Ernst. “Invariant inference for static checking:
An empirical evaluation.” ACM SIGSOFT Software Engineering Notes, 27(6):11–
20, 2002.

[Neu86] Peter G. Neumann. “The Risks Digest.”, 1986.

[NO79] Greg Nelson and Derek C Oppen. “Simplification by cooperating decision proce-
dures.” ACM Transactions on Programming Languages and Systems (TOPLAS),
1(2):245–257, 1979.

[OG92] José Oncina and Pedro García. “Identifying regular languages in polynomial time.”
Advances in Structural and Syntactic Pattern Recognition, 5(99-108):15–20, 1992.

138

[OR14] Alessandro Orso and Gregg Rothermel. “Software testing: a research travelogue
(2000–2014).” In Proceedings of the on Future of Software Engineering, pp. 117–132.
ACM, 2014.

[Org14] SyGuS-Comp Organizers. “The SyGuS Competition.”, 2014. http://sygus.org/
comp/.

[ORS92] Sam Owre, John M Rushby, and Natarajan Shankar. “PVS: A prototype verifica-
tion system.” In International Conference on Automated Deduction, pp. 748–752.
Springer, 1992.

[OZ15] Peter-Michael Osera and Steve Zdancewic. “Type-and-example-directed program
synthesis.” ACM SIGPLAN Notices, 50(6):619–630, 2015.

[Pea88] Giuseppe Peano. Calcolo geometrico secondo l’Ausdehnungslehre di H. Grassmann:
preceduto dalla operazioni della logica deduttiva, volume 3. Fratelli Bocca, 1888.

[PG15] Oleksandr Polozov and Sumit Gulwani. “Flashmeta: A framework for inductive
program synthesis.” ACM SIGPLAN Notices, 50(10):107–126, 2015.

[PG16] Oleksandr Polozov and Sumit Gulwani. “Program Synthesis in the Industrial World:
Inductive, Incremental, Interactive.” In 5th Workshop on Synthesis (SYNT), 2016.

[PGG14] Daniel Perelman, Sumit Gulwani, Dan Grossman, and Peter Provost. “Test-driven
synthesis.” ACM Sigplan Notices, 49(6):408–418, 2014.

[PJP18] Saswat Padhi, Prateek Jain, Daniel Perelman, Oleksandr Polozov, Sumit Gulwani,
and Todd Millstein. “FlashProfile: a framework for synthesizing data profiles.”
Proceedings of the ACM on Programming Languages, 2(OOPSLA):150, 2018.

[PKS16] Nadia Polikarpova, Ivan Kuraj, and Armando Solar-Lezama. “Program synthesis
from polymorphic refinement types.” ACM SIGPLAN Notices, 51(6):522–538,
2016.

[PMN19] Saswat Padhi, Todd Millstein, Aditya Nori, and Rahul Sharma. “Overfitting in
synthesis: Theory and practice.” In International Conference on Computer Aided
Verification, pp. 315–334. Springer, 2019.

[PSM16] Saswat Padhi, Rahul Sharma, and Todd Millstein. “Data-driven precondition
inference with learned features.” In Proceedings of the 37th ACM SIGPLAN
Conference on Programming Language Design and Implementation, pp. 42–56.
ACM, 2016.

[PSM17] Saswat Padhi, Rahul Sharma, and Todd Millstein. “LoopInvGen: A Loop Invariant
Generator based on Precondition Inference.” arXiv preprint arXiv:1707.02029,
2017.

139

http://sygus.org/comp/
http://sygus.org/comp/

[Qui86] J. Ross Quinlan. “Induction of decision trees.” Machine learning, 1(1):81–106,
1986.

[RBV16] Veselin Raychev, Pavol Bielik, Martin Vechev, and Andreas Krause. “Learning
programs from noisy data.” ACM SIGPLAN Notices, 51(1):761–774, 2016.

[RDK15] Andrew Reynolds, Morgan Deters, Viktor Kuncak, Cesare Tinelli, and Clark
Barrett. “Counterexample-guided quantifier instantiation for synthesis in SMT.”
In International Conference on Computer Aided Verification, pp. 198–216. Springer,
2015.

[RH01] Vijayshankar Raman and Joseph M Hellerstein. “Potter’s wheel: An interactive
data cleaning system.” In VLDB, volume 1, pp. 381–390, 2001.

[SA14] Rahul Sharma and Alex Aiken. “From Invariant Checking to Invariant Inference
Using Randomized Search.” In International Conference on Computer Aided
Verification, pp. 88–105. Springer, 2014.

[SB14] Shai Shalev-Shwartz and Shai Ben-David. Understanding machine learning: From
theory to algorithms. Cambridge university press, 2014.

[SCI08] Sriram Sankaranarayanan, Swarat Chaudhuri, Franjo Ivančić, and Aarti Gupta.
“Dynamic inference of likely data preconditions over predicates by tree learning.” In
Proceedings of the 2008 international symposium on Software testing and analysis,
pp. 295–306. ACM, 2008.

[SDC14] Todd W Schiller, Kellen Donohue, Forrest Coward, and Michael D Ernst. “Case
studies and tools for contract specifications.” In Proceedings of the 36th Interna-
tional Conference on Software Engineering, pp. 596–607. ACM, 2014.

[SDR18] Xujie Si, Hanjun Dai, Mukund Raghothaman, Mayur Naik, and Le Song. “Learning
loop invariants for program verification.” In Advances in Neural Information
Processing Systems, pp. 7751–7762, 2018.

[SGF10] Saurabh Srivastava, Sumit Gulwani, and Jeffrey S Foster. “From program verifi-
cation to program synthesis.” In ACM Sigplan Notices, volume 45, pp. 313–326.
ACM, 2010.

[SGH13a] Rahul Sharma, Saurabh Gupta, Bharath Hariharan, Alex Aiken, Percy Liang,
and Aditya V Nori. “A data driven approach for algebraic loop invariants.” In
European Symposium on Programming, pp. 574–592. Springer, 2013.

[SGH13b] Rahul Sharma, Saurabh Gupta, Bharath Hariharan, Alex Aiken, and Aditya V
Nori. “Verification as learning geometric concepts.” In International Static Analysis
Symposium, pp. 388–411. Springer, 2013.

140

[Sin16] Rishabh Singh. “Blinkfill: Semi-supervised programming by example for syntactic
string transformations.” Proceedings of the VLDB Endowment, 9(10):816–827,
2016.

[SIS06] Sriram Sankaranarayanan, Franjo Ivančić, Ilya Shlyakhter, and Aarti Gupta.
“Static analysis in disjunctive numerical domains.” In International Static Analysis
Symposium, pp. 3–17. Springer, 2006.

[SK13] Mohamed Nassim Seghir and Daniel Kroening. “Counterexample-guided precondi-
tion inference.” In European Symposium on Programming, pp. 451–471. Springer,
2013.

[SMA05] Koushik Sen, Darko Marinov, and Gul Agha. “CUTE: a concolic unit testing
engine for C.” In ACM SIGSOFT Software Engineering Notes, volume 30, pp.
263–272. ACM, 2005.

[SNA12] Rahul Sharma, Aditya V Nori, and Alex Aiken. “Interpolants as classifiers.” In
International Conference on Computer Aided Verification, pp. 71–87. Springer,
2012.

[SNA14] Rahul Sharma, Aditya V Nori, and Alex Aiken. “Bias-variance tradeoffs in program
analysis.” ACM SIGPLAN Notices, 49(1):127–137, 2014.

[Sol13] Armando Solar-Lezama. “Program sketching.” International Journal on Software
Tools for Technology Transfer, 15(5-6):475–495, 2013.

[SS14] Mohamed Nassim Seghir and Peter Schrammel. “Necessary and sufficient precon-
ditions via eager abstraction.” In Asian Symposium on Programming Languages
and Systems, pp. 236–254. Springer, 2014.

[SSC15] Rahul Sharma, Eric Schkufza, Berkeley Churchill, and Alex Aiken. “Conditionally
correct superoptimization.” ACM SIGPLAN Notices, 50(10):147–162, 2015.

[SSS48] Thorvald Sørensen, TA Sørensen, TJ Sørensen, T SORENSEN, T Sorensen,
TA Sorensen, and T Biering-Sørensen. “A method of establishing groups of
equal amplitude in plant sociology based on similarity of species content and its
application to analyses of the vegetation on Danish commons.” 1948.

[STB06] Armando Solar-Lezama, Liviu Tancau, Rastislav Bodik, Sanjit Seshia, and Vijay
Saraswat. “Combinatorial sketching for finite programs.” ACM SIGOPS Operating
Systems Review, 40(5):404–415, 2006.

[Svi98] Borge Svingen. “Learning regular languages using genetic programming.” In Proc.
3-rd Genetic Programming Conference, pp. 374–376, 1998.

141

[Tik63] Andrei Nikolaevich Tikhonov. “On the solution of ill-posed problems and the
method of regularization.” In Doklady Akademii Nauk, volume 151, pp. 501–504.
Russian Academy of Sciences, 1963.

[Tri17] Trifacta. “Trifacta Wrangler.”, 2017. https://www.trifacta.com/.

[Tur37] Alan Mathison Turing. “On computable numbers, with an application to the
Entscheidungsproblem.” Proceedings of the London mathematical society, 2(1):230–
265, 1937.

[Tur49] Alan Mathison Turing. “Checking a large routine.” In Report of a Conference on
High Speed Automatic Calculating Machines, pp. 70–72. University Mathematical
Laboratory, Cambridge, 06 1949.

[Wal13] John Walkenbach. Excel 2013 formulas. John Wiley & Sons, 2013.

[Wei91] Mark Weiser. “The computer for the 21st century.” Scientific american, 265(3):94–
104, 1991.

[WFH17] Ian H Witten, Eibe Frank, Mark A Hall, and Christopher J Pal. Data Mining:
Practical Machine Learning Tools and Techniques, 4th Edition. Morgan Kaufmann
Series in Data Management Systems. Elsevier Science & Technology, 2017.

[Win99] William E Winkler. State of statistical data editing and current research problems.
Bureau of the Census, 1999.

[WLB09] Jim Woodcock, Peter Gorm Larsen, Juan Bicarregui, and John Fitzgerald. “Formal
methods: Practice and experience.” ACM computing surveys (CSUR), 41(4):19,
2009.

[Woo14a] Daniel Davis Wood. “ETHEREUM: A SECURE DECENTRALISED GENER-
ALISED TRANSACTION LEDGER.” 2014.

[Woo14b] Gavin Wood. “The Solidity Contract-Oriented Programming Language.”, 2014.

[XW05] Rui Xu and Donald Wunsch. “Survey of clustering algorithms.” IEEE Transactions
on neural networks, 16(3):645–678, 2005.

[ZFW12] Kenny Q Zhu, Kathleen Fisher, and David Walker. “Learnpads++: Incremental
inference of ad hoc data formats.” In International Symposium on Practical Aspects
of Declarative Languages, pp. 168–182. Springer, 2012.

[ZMJ18] He Zhu, Stephen Magill, and Suresh Jagannathan. “A data-driven CHC solver.”
ACM SIGPLAN Notices, 53(4):707–721, 2018.

[ZZG13] Yunhui Zheng, Xiangyu Zhang, and Vijay Ganesh. “Z3-str: A z3-based string
solver for web application analysis.” In Proceedings of the 2013 9th Joint Meeting
on Foundations of Software Engineering, pp. 114–124, 2013.

142

https://www.trifacta.com/

	Introduction
	Post-hoc Validation
	Formal Verification
	Software Testing

	Correctness by Construction
	Formal Synthesis
	Programming by Examples

	Thesis Statement and Contributions

	Learning Program Invariants
	Overview
	Data-Driven Precondition Inference
	Feature Learning via Program Synthesis
	Feature Learning for Loop Invariant Inference

	Algorithms
	Precondition Inference
	Loop Invariant Inference

	Evaluation
	Precondition Inference
	Loop Invariants for C++ Code

	Related Work
	Applications and Extensions

	Learning Input Specifications
	Overview
	Pattern-Specific Clustering
	Pattern Learning via Program Synthesis

	Hierarchical Clustering
	Syntactic Dissimilarity
	Adaptive Sampling of Patterns
	Dissimilarity Approximation
	Hierarchy Construction and Splitting
	Profiling Large Datasets

	Pattern Synthesis
	The Pattern Language Lp
	Synthesis of LpPatterns
	Cost of Patterns in Lp

	Evaluation
	Syntactic Similarity
	Profiling Accuracy
	Performance
	Comparison of Learned Profiles

	Applications in PBE Systems
	Related Work

	Overfitting in Program Synthesis
	Motivation
	Grammar Sensitivity of SyGuS Tools
	Evidence for Overfitting

	SyGuS Overfitting in Theory
	Preliminaries
	Learnability and No Free Lunch
	Overfitting

	Mitigating Overfitting
	Parallel SyGuS on Multiple Grammars
	Hybrid Enumeration

	Experimental Evaluation
	Robustness of PLearn
	Performance of Hybrid Enumeration
	Competition Performance

	Related Work

	Conclusion
	References

